533
Views
17
CrossRef citations to date
0
Altmetric
Articles

The preparation and characterization of TiO2/r-GO/Ag nanocomposites and its photocatalytic activity in formaldehyde degradation

, , , &
Pages 193-205 | Received 27 Dec 2018, Accepted 25 May 2019, Published online: 10 Jun 2019
 

ABSTRACT

A series of TiO2-rGO-Ag nanocomposites were prepared in this work via a facile one-pot hydrothermal method utilized for formaldehyde (HCHO) photodegradation; using TiO2, graphene oxide(GO) as well as AgNO3 as the raw materials, and sodium citrate as a reducing agent. Characterization by X-ray diffraction (XRD), Raman spectra, Transmission electron microscopy (TEM) and Field emission scanning electron microscopy (FESEM) demonstrated that GO and Ag+ were reduced during the formation of TiO2-rGO-Ag nanocomposites. X-ray photoelectron spectroscopy(XPS), UV–vis diffuse reflectance spectroscopy (DRS), photoluminescence spectra(PL) and Photocurrent spectrum measurement were applied to quantitatively characterize the bonding between TiO2 and rGO, the band gap energy of catalysts as well as electron–hole pairs recombination rate. The results revealed that the introduction of rGO sheets and Ag nanoparticles reduced the band gap energy of catalysts; it also suppressed the recombination of electron–hole pairs. However, C–O–Ti bond, which played a key role in photocatalysis, was reduced to some extent by the existence of Ag. Photodegradation results showed that, when the Ag loading was 9 mol% of TiO2, the reaction rate constant of formaldehyde (HCHO) removal improved distinctly, by about 22.3 times that of TiO2. The radical scavenger tests and electron paramagnetic resonance(EPR) analysis revealed that superoxide radical (·O2), hole (h+), and hydroxylradical (·OH) were reactive species of formaldehyde photodegradation.

GRAPHICAL ABSTRACT

Disclosure statement

The authors declare no potential conflict of interest.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 223.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.