148
Views
6
CrossRef citations to date
0
Altmetric
Articles

Adsorption and biodegradation removal of methylene blue in a down-flow hanging filter reactor incorporating natural adsorbent

, , , &
Pages 410-418 | Received 15 Mar 2019, Accepted 03 Jun 2019, Published online: 17 Jun 2019
 

ABSTRACT

This study was carried out to explore the importance of adsorption and biodegradation mechanisms for methylene blue (MB) removal by a novel natural adsorbent (purified coconut fibre; PCF) incorporated to a down-flow hanging fibre (DHF) reactor. An adsorption DHF (Ads-DHF) reactor demonstrated the adsorption removal mechanism, while a combined adsorption-biological DHF (Bio-DHF) reactor simulated the processes of both adsorption and biodegradation were investigated for the MB removal capability. PCF prepared from coconut fibre waste was applied as a media in the DHF reactors. The process performance and the removal mechanisms of the DHF reactors were evaluated for 62 days. The results showed that a total MB removal efficiency of 93 ± 7% was achieved for the Bio-DHF reactor and 36 ± 25% for the Ads-DHF reactor. The combined adsorption and biological degradation in the Bio-DHF reactor enhanced the removal efficiency and the life-time of the reactor compared with the performance of the adsorption process alone in the Ads-DHF reactor. Moreover, microbial community analysis revealed that microorganisms, commonly involved in the biodegradation of dyes, were predominant in the Bio-DHF reactor. The PCF media of the Bio-DHF reactor was essential to keep the dye degrading bacteria in the reactor. Therefore, it can be concluded that the Bio-DHF reactor is an appropriate treatment system for treating dyes wastewater. This research is significant and useful for environmental protection and reuse of biomass wastes.

GRAPHICAL ABSTRACT

Acknowledgements

The authors would like to thank Ms. Nguyen Phuong Thao for valuable assistance on this research.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 223.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.