275
Views
8
CrossRef citations to date
0
Altmetric
Articles

Biodegradation study of PDLA/cellulose microfibres biocomposites by Pseudomonas aeruginosa

, , , &
Pages 731-742 | Received 12 Feb 2019, Accepted 09 Jul 2019, Published online: 19 Jul 2019
 

ABSTRACT

Aerobic biodegradation of biocomposites has been studied in both solid and liquid media. The research was concentrated on the biodegradation under aerobic and mesophilic conditions using poly-d-lactic acid (PDLA) and PDLA/cellulose microfibres (CMFs) samples as the sole carbon source. To determine the efficiency of the biodegradation, quantitative (mass variations, optical density (OD)) and qualitative (FTIR, NMR and SEM) analyses have been used to follow the polymer changes after degradation. The weight loss and OD of the biocomposites samples PDLA/CMFs were slower than that of pristine PDLA. The PDLA displayed the most important loss of weight (7.09%, 8.95%) compared to its initial weight and the lowest weight loss was detected in PDLA/CMF300 (1.04%, 2.19%) in solid and liquid mediums respectively. Also, the OD value of PDLA was increased from the seven days (0.381) to the last day (0.969). It appears that the major rate-determining factor affecting material degradation was its crystallinity without or with minimal assistance from abiotic factor because crystalline phases inhibit the diffusion of small water molecules. Otherwise, the Pseudomonas aeruginosa was isolated from Mediterranean soil has been found to be a novel candidate to biodegrade PDLA under mesophilic conditions.

GRAPHICAL ABSTRACT

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 223.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.