216
Views
2
CrossRef citations to date
0
Altmetric
Articles

Enhanced adsorption of aqueous acetone by modified powdered activated carbon

, , , , , & show all
Pages 2641-2652 | Received 31 Jul 2019, Accepted 22 Dec 2019, Published online: 31 Dec 2019
 

ABSTRACT

Acetone, a small molecule organic compound, is freely soluble and volatile. To improve the removal rate of acetone, three different types of powdered activated carbon (PAC) were compared and then modified with formic acid and NaOH to optimize the adsorption capacities of PAC. The adsorption mechanism and the effect of physical–chemical properties of PAC to the adsorption were clarified. Results show that PAC produced from wood performed best adsorption capacities. The pseudo-second-order model and the Freundlich model accurately described the adsorption behaviour, while lower temperature was more conducive to the adsorption process. PAC giving a higher acetone adsorption capacity had a larger specific surface area, a richer micropore structure, a larger micropore volume, a smoother surface, with more acidic, oxidizing functional groups. The adsorption removal efficiency of modified PACs with formic acid was improved from 60.89% to 82.93%, while NaOH modification decreased the adsorption capacity. The positive effect of formic acid was attributed to the formation of novel acidic oxygen-containing functional groups, which was supported from the NaOH treatment that removed original acidic oxygen-containing functional groups, contrarily the formation of novel alkaline reducing functional groups did not restore the acetone adsorption capacity. We conclude that wooden PAC is a suitable adsorbent for acetone, in particular after pretreatment with formic acid.

GRAPHICAL ABSTRACT

Acknowledgements

We would like to give our sincere thanks to the peer-reviewers for their suggestions.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

The authors acknowledge the financial support of the National Natural Science Foundation of China [grant number 51778012].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 223.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.