208
Views
1
CrossRef citations to date
0
Altmetric
Articles

Experimental study on the permeability of Pb-contaminated silt solidified by CFG

, ORCID Icon, , , &
Pages 1294-1306 | Received 25 Jul 2020, Accepted 11 Sep 2020, Published online: 02 Oct 2020
 

ABSTRACT

The permeability of soil is a fundamental parameter in hydrological and geotechnical studies, nevertheless, the investigations on the silt especially the heavy mental contaminated silt have rarely been reported. The research introduces the effect of the different factors, including the osmotic pressure, curing time, the content of binders and the concentration of lead, on the permeability and microscopic properties of lead-contaminated silt, which is solidified by a novel curing agent, formed by mixing cement, fly ash and desulphurization gypsum (CFG). According to the tests of the permeability and scanning electron microscope (SEM), the permeability of samples is investigated under different influencing factors. The results demonstrate that the permeability coefficient of the contaminated silt increases with the increasing osmotic pressure and lead ion concentration, while decreases with the increasing CFG content and the curing time, additonally, there are interactions among various factors, which jointly affect the permeability of samples. Moreover, the statistical analysis shows that osmotic pressure has the most significant effect on permeability among various factors. Besides, the influence of lead ion concentration, osmotic pressure and CFG content on the permeability coefficient at the curing time of 14d is more significant than that of 28d, and the influence order of factors was slightly different at different curing time. Furthermore, the SEM test proves the conclusion of the statistical analysis, which also explains the common reasons for the enhancement of the impermeability and unconfined compressive strength (UCS) of the lead-contaminated silt with the increasing curing time.

GRAPHICAL ABSTRACT

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This research was funded by Research Foundation of the Institute of Environment-friendly Materials and Occupational Health of Anhui University of Science and Technology, Wuhu [ALW2020YF02] and Innovation fund for Postgraduates of Anhui University of Science and Technology [2019CX2020].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 223.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.