492
Views
6
CrossRef citations to date
0
Altmetric
Articles

Valorisation of hazardous medical waste using steam injected plasma gasifier: a parametric study on the modelling and multi-objective optimisation by integrating Aspen plus with RSM

ORCID Icon & ORCID Icon
Pages 4291-4305 | Received 01 Mar 2021, Accepted 16 Jun 2021, Published online: 09 Sep 2021
 

ABSTRACT

The COVID-19 Pandemic has a detrimental effect on the environment related to the exponential rise in medical waste (MW). Extraction of energy from the toxic MW with the latest gasification technology instead of conventional incineration is of utmost importance to promote sustainable development. This present study investigates the processing of MW for the generation of enriched hydrogen syngas using steam injected plasma gasifier. Modelling of Plasma gasifier was performed in Aspen Plus and Model validation was done with the experimental result and, a good agreement was attained. Sensitivity analysis was implemented on MW in which the influence of gasification temperature, equivalence ratio (ER), and Steam/Biomass (S/B) on the producer gas (PG) composition, gas yield, H2/CO ratio, cold gas efficiency (CGE), and the higher heating value (HHV) was calculated. Furthermore, Response surface methodology (RSM) has been incorporated for the multi-objective optimisation of the variable gasification parameters. R2 values obtained from ANOVA for H2, CGE, and HHV are 98.62%, 99.10%, and 98.9% respectively. Using the response optimiser, the optimum values of H2, CGE, and HHV were found to be 0.43 (mole frac), 89.95%, and 7.49 MJ/Nm3 for temperature at 1560.60°C, equivalence ratio 0.1, and S/B 0.99, respectively. The observed coefficient of desirability was about 0.97.

GRAPHICAL ABSTRACT

Acknowledgements

We would like to express our gratitude to the IC engine and alternate fuel laboratory, Mechanical Engineering Department, IIT (BHU).

Disclosure statement

No potential conflict of interest was reported by the author(s).

Data availability statement

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 223.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.