751
Views
3
CrossRef citations to date
0
Altmetric
Articles

Removal characteristics of heavy metal ions in rainwater runoff by bioretention cell modified with biochar

, , , , , & show all
Pages 4515-4527 | Received 19 Jan 2021, Accepted 25 Jun 2021, Published online: 22 Jul 2021
 

ABSTRACT

As a form of pollution source control and a low-impact development measure, bioretention is a convenient, economical, and effective method for the removal of heavy metals from stormwater runoff, which can adapt to the randomness and uncontrollability of non-point source pollution. However, few studies have assessed the performance of bioretention in the simultaneous removal of multiple heavy metals and the impact of heavy metal migration on the bioretention life cycle. In this study, the removal rates of various heavy metals: copper (Cu), zinc (Zn), lead (Pb), and cadmium (Cd), were enhanced using a biochar modified bioretention cell, as compared to the traditional sandy soil bioretention process. Following treatment with the biochar modified bioretention cell, the average concentrations of Cu, Zn, Pb, and Cd were 55%, 61%, 19.66%, and 36.43% lower than the traditional sandy soil bioretention effluent, respectively. These results show that biochar significantly improves the removal of heavy metals by the bioretention process, especially Cu and Zn. This study also evaluated the effect of biochar on the inhibition of heavy metal migration in the filler material, by sampling and analysing the filler and retained water at different filler depths, then repeating the filler leaching experiment after simulated rainfall. The content of heavy metals at a filler depth of 45 cm in the traditional sandy soil bioretention system, was significantly higher than in the biochar modified bioretention system, showing that biochar plays an important role in the inhibition of heavy metal migration.

GRAPHICAL ABSTRACT

Disclosure statement

No potential conflict of interest was reported by the author(s).

Data availability statement

The data in the study are all available.

Additional information

Funding

This work was supported by National Natural Science Foundation of China [grant number no. 52070152]; Key Research and Development Program of Shaanxi Province [grant number no. 2021NY-168].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 223.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.