350
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Simultaneous separation and degradation of methylene blue by a thin film nanocomposite membrane containing TiO2/MWCNTs nanophotocatalyst

ORCID Icon, , , , &
Pages 670-685 | Received 13 Feb 2021, Accepted 31 Aug 2021, Published online: 04 Oct 2021
 

ABSTRACT

An innovative photocatalytic thin film nanocomposite (TFN) membrane was prepared and used for the simultaneous separation/degradation of methylene blue (MB) under UV irradiation. For this purpose, we used the sol-gel method to prepare the TiO2/MWCNTs nanophotocatalyst and added to the 1,3-phenylenediamine (MPD) solution during interfacial polymerization (IP) of 1,3,5-benzenetricarbonyl chloride (TMC) and 1,3-phenylenediamine monomers on the polysulfone (PSF) support. Using scanning electron microscopy (SEM) analysis and studying the cross-sectional images of membrane samples, it was revealed that the polyamide (PA) thin layer was well fabricated over the support membrane. The attendance of the TiO2/MWCNTs nanophotocatalyst in the PA thin layer of TFN samples was also proved using EDX (energy-dispersive X-ray) analysis. According to the results of the contact angle (CA), it is clear that the hydrophilicity of membrane samples first increased and then decreased by enhancing the TiO2/MWCNTs nanophotocatalyst content in the PA thin layer. In comparison with the pristine thin film composite (TFC) membrane, TFN samples showed higher water flux and MB removal when they were exposed to UV light. Finally, it turned out that the TFN membrane comprising 0.2 wt. % TiO2/MWCNTs nanophotocatalyst (TFN 0.2) had the foremost efficiency among TFNs with the water flux of 13 L/m2·hr and dye separation/degradation of almost 100% under UV irradiation.

GRAPHICAL ABSTRACT

Data availability statement

This paper has no associated data.

Acknowledgments

The authors thank the University of Tehran (Iran) for all support provided.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 223.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.