188
Views
0
CrossRef citations to date
0
Altmetric
Articles

Application of filter media surface hydrophobic modification to reduce bioclogging in the infiltration system

, ORCID Icon, &
Pages 2270-2279 | Received 27 Aug 2021, Accepted 23 Dec 2021, Published online: 25 Jan 2022
 

ABSTRACT

Bioclogging is a commonly encountered operational issue that lowers hydraulic conductivity and the overall performance of the infiltration systems. In this paper, a novel processing for alleviating bioclogging by filter media surface hydrophobic modification was presented. Two-dimensional porous media cells were used to observe the influence of hydrophobic modification on biofilm growth in the pore structure. Moreover, two continuous-flow columns packed with gravel, one of which half gravel was hydrophobically modified, were operated with artificial wastewater to verify the effect of hydrophobic modification on bioclogging alleviation. The results showed that the biofilm growth in the cell with hydrophobic modification was slow, and the biomass was less and liable to wipe off after hydrophobic treatment. Meanwhile, the hydraulic efficiency of the flow seepage field was also improved after hydrophobic treatment. The column tests results showed that the hydraulic conductivity of the filter bed with hydrophobic modification (Column B) decreased more slowly than that of another without hydrophobic modification (Column A). Column B had the hydraulic conductivity (k) of 0.66 cm/s in the final stage of the experiment, while the k of Column A was 0.14 cm/s. It verified that hydrophobic modification of partial filter media can alleviate the bioclogging problem of the infiltration systems to some extent. The results provide a new idea and potential technical support for solving bioclogging problem.

GRAPHICAL ABSTRACT

Acknowledgement

The Project was supported by National Natural Science Foundation of China (51878597).

Disclosure statement

No potential conflict of interest was reported by the author(s).

Data availability statement

All data generated or used during the study are available from the corresponding author by request

Additional information

Funding

The Project was supported by National Natural Science Foundation of China [51878597].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 223.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.