169
Views
0
CrossRef citations to date
0
Altmetric
Articles

Potential phytoremediation system using macrophyte Limnobium laevigatum to remove in situ Cr from contaminated bottom sediments

, &
Pages 2770-2780 | Received 13 Sep 2021, Accepted 08 Feb 2022, Published online: 01 Mar 2022
 

ABSTRACT

The contamination of aquatic environments with heavy metals is an important issue, and in turn, it is crucial to study remediation techniques that can be applied in situ. In this work, the use of a containment system with macrophytes Limnobium laevigatum is explored in the laboratory to evaluate the remotion of Cr in contaminated sediments. The roots of the plants were placed in contact with the bottom sediment through a containment system. The concentration of Cr in macrophyte and sediment samples exposed to different exposure times (1, 4 and 7 days) was determined by laser-induced breakdown spectroscopy technique. The initial concentration of Cr in the sediment was 112 ± 5 mg/kg and decreased by 65% to the control (p < 0.05) after 24 h of exposure. The removal continued throughout the study time until reaching values of 23 ± 1 mg/kg. In macrophytes, the Cr concentration increased from 20 ± 5 mg/kg to 2066 ± 216 mg/kg after seven days of exposure. The correlation coefficient between Cr concentrations in both matrices was −0.96. Finally, the bioaccumulation factor of Cr in L. laevigatum was 95.22 ± 8.51. Therefore, the system studied could be a potential tool to remedy the bottom sediments of streams and lakes contaminated with heavy metals in situ.

GRAPHICAL ABSTRACT

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CICPBA).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 223.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.