247
Views
0
CrossRef citations to date
0
Altmetric
Articles

Performance and mechanism of FeS2/FeSxOy as highly effective Fenton-like catalyst for phenol degradation

, , , , ORCID Icon &
Pages 3731-3740 | Received 12 Jan 2022, Accepted 20 Apr 2022, Published online: 06 May 2022
 

ABSTRACT

Developing a highly efficient Fenton-like catalyst working in a wide pH range is imperative to accomplish its practical wastewater treatment. Herein, FeS2/FeSxOy catalyst was synthesized by hydrothermal-solvothermal vulcanization with thioacetamide as a sulfur source. Characterization results confirmed FeS2/FeSxOy consisted of pyrite, kornelite, and szomolnokite. FeS2/FeSxOy exhibited superior catalytic activity toward H2O2 activation with more than 96% phenol removal within 5 min in pH 3.0 ∼ 8.0 at 30°C. Radical scavenging experiment and EPR analysis revealed both hydroxyl radicals (·OH) and superoxide anion radicals (O2·-) anticipated in phenol elimination, but ·OH played a dominant role. The detailed degradation experiments and density functional theory (DFT) calculation confirmed the vital role of FeS2 in enhancing phenol abatement. This study not only developed a highly active catalyst for H2O2 activation but also theoretically analyzed the FeS2 function in depth, which provided a guide for designing a highly efficient Fenton-like catalyst.

GRAPHICAL ABSTRACT

Disclosure statement

No potential conflict of interest was reported by the author(s).

Data availability statement

The authors confirm that the data supporting the findings of this study are available within the article.

Correction Statement

This article has been corrected with minor changes. These changes do not impact the academic content of the article.

Additional information

Funding

This work was supported by the National Natural Science Foundation of China [grant number 21906008]; General project of Chongqing Natural Science Foundation [grant number cstc2021jcyj-msxmX0787]; Open Project of State Key Laboratory of Urban Water Resource and Environment of Harbin Institute of Technology [grant number HCK202115]; Science and Technology Research Program of Chongqing Municipal Education Commission [grant number KJQN201901415,KJQN201901420,KJQN202001413].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 223.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.