203
Views
0
CrossRef citations to date
0
Altmetric
Articles

Soil properties and functional genes in nitrogen removal process of bioretention

, , &
Pages 2268-2283 | Received 20 Jul 2022, Accepted 09 Dec 2022, Published online: 22 Feb 2023
 

ABSTRACT

The effects of different soil properties on hydrology and nitrogen removal were studied in a simulated bioretention system. Soil capacity of permeability and water retention, changes in the soil environment, leachate concentrations at the surface and bottom layers, quantification of N removal from soil, microorganism and plant by 15N isotope tracer technique, and functional genes abundance at different depths were evaluated. The results showed that shallow root plants, soil compaction, and low organic matter content were not conducive to the infiltration of bioretention systems. In the 72 h experiment, compaction (especially surface compaction) and planting of herbaceous plants (Ophiopogon japonicus) were not beneficial to the removal of TN, TP, and COD. Adding an appropriate amount of organic matter also affects nitrogen and phosphorus removal. In the process of denitrification, the order of the ability to remove nitrogen is soil adsorption > microbial assimilation > plant uptake. The contribution of soil denitrification is affected by soil compaction, compaction location, plant species and organic matter content. The abundance of 16S rRNA, nitrifying, denitrifying and nrfA genes decreased with soil depth. More copies of genes in topsoil were thought to be due to sufficient nutrients, aerobic condition, anaerobic microsites and submerged state. Soil compaction, organic matter content and plant species affected nitrification, denitrification and DNRA gene characteristics.

GRAPHICAL ABSTRACT

Disclosure statement

No potential conflict of interest was reported by the author(s).

Data availability statement

Data supporting the findings of this study are available from the corresponding author upon reasonable request.

Additional information

Funding

This work was supported by the sub-project of the Major Science and Technology Program for Water pollution Control and Treatment [grant number 2017ZX07103-002], National Natural Science Foundation of China [grant number 51408021].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 223.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.