267
Views
0
CrossRef citations to date
0
Altmetric
Articles

Synthesis of a reactive lignin-based flame retardant and its application in phenolic foam

, , , &
Pages 2506-2518 | Received 11 Oct 2022, Accepted 25 Jan 2023, Published online: 20 Feb 2023
 

ABSTRACT

To improve the flame retardancy of phenolic foam from the perspective of sustainable development, it is a feasible way to add bio-based flame retardants into phenolic foam. Lignin has a similar structure to phenol, which provides a possibility to replace part of phenol. In this paper, we prepared a kind of reactive bio-based flame retardant based on enzymatic hydrolyzed lignin, in which side chain was chemically grafted with phosphorus and nitrogen and benzene ring would participate in the phenolic condensation reaction. According to elemental analysis and ICP-OES data, the content of nitrogen and phosphorus in modified lignin (NP-L) increased to 2.95% and 3.55% respectively. Compared with original lignin, the carbon residue rate of NP-L increased from 3.25% to 12.13% because of the presence of flame retardant elements N and P. Then lignin-based flame retardant was used to replace phenol for modifying phenolic foams (NPLPFX). The limited oxygen index (LOI) and compressive strength of phenolic foam were improved effectively by adding modified lignin when the substitution rate was less than 25%. The LOI and compressive strength of the modified phenolic foam with 5% replacement amount (NPLPF5) are 55.6% and 0.24 MPa, which increased by 88% and 60% compared with pure phenolic foam. The cone calorimetric data also showed that NPLPF5 had good flame retardancy, and the peak heat release rate and total heat release were significantly lower than PF. This work suggests a novel green strategy for improving the flame retardancy performance of phenolic foam and promoting the utilization of lignin.

GRAPHICAL ABSTRACT

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Grant No. 2021YFC2101604), the National Natural Science Foundation of China (Grant Nos. 31890773 and 32071718 to X.H. Yang), the Research Funds of Jiangsu Key Laboratory for Biomass Energy and Material (Grant Nos. JSBEM-S-201803 to X.H. Yang).

Disclosure statement

No potential conflict of interest was reported by the author(s).

Data availability statement

The authors confirm that the data supporting the findings of this study are available within the article.

Correction Statement

This article has been corrected with minor changes. These changes do not impact the academic content of the article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 223.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.