207
Views
0
CrossRef citations to date
0
Altmetric
Articles

Removal of heavy metals from fly ash using electrodialysis driven by a bioelectrochemical system: a case study of Pb, Mn, Cu and Cd

ORCID Icon, , , , , , , & show all
Pages 2709-2720 | Received 30 Sep 2022, Accepted 18 Feb 2023, Published online: 14 Mar 2023
 

ABSTRACT

Municipal solid waste incineration (MSWI) fly ash is classified as hazardous waste due to high leachable heavy metals, and incineration leachate belongs to organic wastewater with high biodegradability. Electrodialysis (ED) has shown potential for the removal of heavy metals from fly ash, and bioelectrochemical system (BES) employs biological and electrochemical reactions to generate electricity and remove contaminants from a wide range of substrates. In this study, the ED-BES coupled system was constructed for the co-treatment of fly ash and incineration leachate, where the ED was driven by BES. The treatment effect of fly ash by varying additional voltage, initial pH and liquid-to-solid (L/S) ratio was evaluated. Results showed that the highest removal rates of Pb, Mn, Cu and Cd were 25.43%, 20.13%, 32.14% and 18.87% after 14 days treatment of the coupled system, respectively. These values were obtained under 300 mV of additional voltage, L/S 20 and initial pH3. After the treatment of the coupled system, the fly ash leaching toxicity was lower than the threshold of GB5085.3-2007. The highest energy saving for removed Pb, Mn, Cu and Cd were 6.72, 15.61, 8.99 and 17.46 kWh/kg, respectively. The ED-BES can be considered a cleanliness approach to treating fly ash and incineration leachate simultaneously.

GRAPHICAL ABSTRACT

Disclosure statement

No potential conflict of interest was reported by the author(s).

Data availability statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Additional information

Funding

This work was financially supported by the National Natural Science Foundation of China [grant number 51608006 and 51878004], the National Key Research and Development Program of China [grant number 2020YEC1908601], and the Innovation Fund Designated for Graduate Students of Anhui University of Science and Technology [grant number 2022CX2001].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 223.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.