57
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Experimental study of microwave-catalytic oxidative degradation of COD in livestock farming effluent by copper-loaded activated carbon

, , , , &
Received 30 Jun 2023, Accepted 25 Aug 2023, Published online: 12 Sep 2023
 

ABSTRACT

The problem of massive discharge of livestock wastewater is becoming more and more severe, causing irreversible damage to the ecological environment, and how to treat livestock wastewater efficiently and rapidly deserves to be studied in depth. In this work, CuO/granular activated carbon (GAC) loaded catalysts were prepared and characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), nitrogen adsorption/desorption techniques, and X-ray energy spectroscopy (EDS). The results showed that CuO was successfully attached to the GAC surface with good adsorption performance. The effects of catalyst dosage, H2O2 dosage, initial pH, microwave power and microwave irradiation time in different reaction systems on the degradation efficiency of chemical oxygen demand (COD) in wastewater were investigated, and the orthogonal experiments were used to explore the importance ranking of these factors. The highest degradation rate of COD was found to be enhanced by 12.1% in the reaction system of CuO/GAC, and the initial pH had the greatest effect on the COD removal rate. The combined MW/catalyst/H2O2 method used in this work provided a rapid and effective degradation of COD in wastewater, which can be helpful for reference in other microwave catalytic oxidation studies.

GRAPHICAL ABSTRACT

Disclosure statement

No potential conflict of interest was reported by the author(s).

Data availability statement

All relevant data are included in the paper or its Supplementary Information. The authors confirm that the data supporting the findings of this study are available within the article.

Additional information

Funding

This work was supported by Natural Science Foundation of Shandong Province: [Grant Number ZR2020ME191].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 223.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.