24
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Extraction of phosphorus from sewage sludge ash by electrodialysis combined with wet-chemical extraction

, , , , , , , & show all
Received 04 Feb 2023, Accepted 03 Jun 2024, Published online: 26 Jun 2024
 

ABSTRACT

Phosphorus (P) recovery from sewage sludge ash (SSA) is considered to be an effective method for P recovery. In this work, P extraction and the removal of heavy metals were realized by electrodialysis. Low-cost, easily available, and environmentally friendly plant extracts were applied as suspension to reduce the inevitable secondary pollution. And the feasibility of using plant extracts was analysed by comparing with using deionized water (DI) and oxalic acid (OA) solution. When SSA was suspended in different solutions (DI, OA, and three plant extracts – Hovenia acerba (HA), Saponin (SA) and Portulaca oleracea (PO)), the effects of reaction time and plant extract concentration on P extraction and heavy metal separation of SSA under ED treatment were compared. After the process of electrodialysis, compared to other experimental groups, electrodialysis with plant extracts obtained more P released from SSA, but less P migrated to the anode chamber. However, when SSA was suspended in PO at a concentration of 80 g/L, the proportion of P transferred from SSA to the anode chamber can still reached 37.86%. In addition, the use of plant extracts as suspension had a positive effect on the removal of heavy metals, but its effect was lower than that of the oxalic acid-treated experimental group. The results indicated that the use of plant extracts for wet-chemical extraction combined with electrodialysis promoted the removal of heavy metals and the extraction of P from SSA, which is a feasible option.

GRAPHICAL ABSTRACT

Disclosure statement

No potential conflict of interest was reported by the author(s).

Data availability statement

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Additional information

Funding

This work was supported by the Program for Science and Technology Innovative Research [grant no. CTKY-ZDXM-2019-018] and the Science and Technology Innovation Action Plan of Shanghai of China [grant no. 19DZ1204900].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 223.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.