0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Using PyCaret to model Chlorella vulgaris's growth response to salinity and oil contamination for crude oil bioremediation

ORCID Icon, &
Received 22 Mar 2024, Accepted 08 Jun 2024, Published online: 07 Jul 2024
 

ABSTRACT

Crude oil spills significantly impact aquatic ecosystems, necessitating innovative remediation strategies. Microalgae-based bioremediation, particularly with Chlorella vulgaris, offers a promising solution. This study introduces a novel framework that evaluates the combined effects of selected environmental stressors on microalgal adaptability, advancing beyond traditional isolated factor analyses. By integrating a factorial experimental design with a machine learning approach using PyCaret AutoML and SHAP values, we provide a detailed examination of how crude oil concentration, salinity, and exposure duration affect C. vulgaris growth. The Extra Trees Regressor model emerged as highly accurate in predicting biomass concentration, a crucial adaptability indicator, achieving an MAE of 0.0202, RMSE of 0.029, and an R² of 0.8875. SHAP analysis highlighted salinity and crude oil as significant growth influencers, with exposure duration playing a minor role. Notably, C. vulgaris exhibited more sensitivity to salinity than to crude oil, indicating potential high-salinity challenges but also a strong tolerance to oil pollutants. These findings enhance our understanding of microalgal responses in polluted environments and suggest improved bioremediation approaches for saline waters affected by oil spills, leveraging the synergy of environmental factors and machine learning insights.

GRAPHICAL ABSTRACT

Disclosure statement

No potential conflict of interest was reported by the author(s).

Authors’ contributions

Mohamed Abbas: Conceptualization, Investigation, Methodology, Writing – review & editing. Cunhao Du: Investigation, Writing – review & editing. Lixiao Ni: Supervision, Writing – review & editing.

Data availability statement

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 223.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.