0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Optimising design and operation of sewage source heat pump: techno-economic and environmental assessment

, , , , &
Received 10 Mar 2024, Accepted 14 Jul 2024, Published online: 30 Jul 2024
 

ABSTRACT

Heat pump can be used to recover abundant thermal energy contained in the discharge of municipal wastewater treatment plants. While there are some design standards for common heat pump systems, the design of a sewage source heat pump (SSHP) system is still often based on a fixed heat load and neglects the interdependencies between the equipment sizing and operating parameters. To address the issue that previous design methods have not balanced investment and operational costs well from a global optimisation perspective, this work formulates the simultaneous optimisation of SSHP design and operation as a non-linear programming problem. The proposed model features the consideration of multiple working conditions caused by the impact of ambient temperature variation on the heat load of the SSHP system. The feasibility and potential benefits of the optimised SSHP system are also evaluated by incorporating techno-economic performances and environmental impact analyses into the mathematical framework. A case study is carried out to demonstrate the effectiveness of the proposed methodology. The results show that the total annual cost of the optimally designed and operated SSHP in Harbin could be 9% lower than in Beijing and 39% lower than in Shanghai, suggesting that constructing and running the SSHP system in severe cold regions with great heating demands might be more economical than in less cold regions. The CO2, SO2, and NOx emissions of the SSHP could be approximately 50% less than that of coal-fired boiler heating, and 80% less than that of direct electric heating with coal-fired electricity.

GRAPHICAL ABSTRACT

Disclosure statement

No potential conflict of interest was reported by the author(s).

Data availability statement

Data available on request from the authors.

Additional information

Funding

This work was supported by Capacity Building Plan for some Non-military Universities and Colleges of Shanghai Scientific Committee [grant number: 21010501400]; Huzhou Science and Technology Planning Project [grant number: 2023GS05]; Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration [grant number: SHUES2023A05].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 223.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.