90
Views
12
CrossRef citations to date
0
Altmetric
Miscellany

Functional imaging of vegetative state applying single photon emission tomography and positron emission tomography

, &
Pages 276-282 | Published online: 11 Jan 2007
 

Abstract

Nuclear medicine techniques, such as single photon emission tomography (SPECT) and positron emission tomography (PET) have been applied in patients in a vegetative state to investigate brain function in a non-invasive manner. Parameters investigated include glucose metabolism, perfusion at rest, variations of regional perfusion after stimulation, and benzodiazepine receptor density. Compared to controls, patients in a vegetative state show a substantial reduction of glucose metabolism and perfusion. While patients post-anoxia exhibit a rather homogenous cortical reduction of glucose metabolism, patients after head trauma often show severe cortical and sub-cortical reductions at the site of primary trauma. To distinguish reduced glucose metabolism due to neuronal inactivation from neuronal loss, flumazenil-PET, an indicator of benzodiazepine receptor density, could add valuable information on the extent of brain damage. Activation studies focus on the evaluation of residual brain network, looking for processing in secondary projection fields. So far the predictive strength concerning possible recovery for the individual patient is limited, and PET and SPECT are not routine procedures in the assessment of patients in a vegetative state.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 53.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 375.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.