255
Views
5
CrossRef citations to date
0
Altmetric
Articles

Molecular characterization of quinolone resistance and antimicrobial resistance profiles of Klebsiella pneumoniae and Escherichia coli isolated from human and broiler chickens

, , , &
Pages 1382-1392 | Received 13 Oct 2020, Accepted 29 Jan 2021, Published online: 21 Feb 2021
 

ABSTRACT

This study characterized quinolone (Q) resistance determinants in a series of Klebsiella pneumoniae (n = 26) and Escherichia coli (n = 19) isolates of human and animal origin. The presence of plasmid-mediated quinolone resistance (PMQR) and carabpenemase genes was examined by PCR. The quinolone resistance-determining regions (QRDRs) of gyrA and parC genes were sequenced. Thirty-three isolates had ciprofloxacin MIC≥8 mg/l. About 34.6% and 10.5% of K. pneumoniae and E. coli isolates were ESBL producers respectively. The PMQR genes were detected in 77% (n = 35) of isolates. The oqxAB was the most prevalent PMQR gene being identified in all K. pneumoniae isolates, followed by aac(6ʹ)-Ib-cr (34.6%), qnrS (23%) and qnrB (7.7%). The most frequently detected gene among E. coli isolates was qnrS (36.8%) followed by aac(6′)-Ib-cr (10.5%) and qepA (5.2%). All Q resistant isolates harbored amino acid substitutions in both GyrA and ParC QRDRs. High prevalence of PMQR genes among food-producing animal isolates is an issue of great concern.

Disclosure of interest

The authors report no conflicts of interest.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 371.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.