Publication Cover
Energy Materials
Materials Science and Engineering for Energy Systems
Volume 12, 2017 - Issue 1: Themed Issue on High Temperature Deformation
215
Views
0
CrossRef citations to date
0
Altmetric
Original Research Paper

Determination of creep behaviour of Ti60 alloy by small punch creep test

, &
Pages 166-171 | Received 06 Sep 2016, Accepted 26 Oct 2016, Published online: 16 Nov 2016
 

Abstract

The small punch (SP) creep test has distinct advantages in the creep property assessment of materials at elevated temperatures. However, there are few creep properties of Ti alloys obtained by the SP creep test in the current literature. In this paper, the SP creep behaviour of Ti60 alloy has been evaluated under various loads in the range 550–800 N over a temperature range 873–973 K. The SP creep curves obviously indicated the primary, secondary and tertiary stages of creep. The test results have been compared with those of conventional creep tests. The European Code of Practice (CoP) for Small Punch Testing, Dorn equation and Monkman–Grant relationship have also been used to analyse the results of the SP creep tests. The ratio of load of the SP creep tests to equivalent stress of conventional creep tests, the load exponent value of steady deflection rate and activation energy for creep deformation were estimated from the SP creep tests. In conclusion, it was found that dislocation creep may be the main mechanism that dominates the SP creep deformation of Ti60 alloy in the range of load and temperature.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.