82
Views
0
CrossRef citations to date
0
Altmetric
Article

Comparative study of Y2O3, SnO2 and ZrO2 as inhibitor to control high temperature corrosion of Ni-based superalloy

, , &
Pages 13-23 | Received 12 Oct 2015, Accepted 17 Jan 2023, Published online: 28 Jan 2023
 

ABSTRACT

High temperature corrosion of metals and alloys can be controlled by the use of inhibitors and fuel additives. In this work three different types of coatings namely Y2O3, SnO2 and ZrO2 coatings were superficially applied on Ni base superalloy Superni 718. Accelerated corrosion testing of the uncoated as well as the coated superalloy was done in a molten salt environment (Na2SO4-60%V2O5) at 900°C for 50 cycles. Each cycle consisted of 1 hour heating in a Silicon Carbide Tube furnace followed by 20 minutes cooling in ambient air. Weight change measurements after each cycle were taken by an electronic balance having an accuracy of 0.01 mg. XRD, SEM and EPMA analyses of the exposed specimens were carried out to characterise the oxide scales. The bare superalloy showed more overall weight gain, in comparison with all the coated counterparts. It was concluded that ZrO2 was most effective in reducing corrosion rate in alloy A.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 438.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.