354
Views
9
CrossRef citations to date
0
Altmetric
In Vitro and Animal Studies

Dietary sn-2 palmitic triacylglycerols reduced faecal lipids, calcium contents and altered lipid metabolism in Sprague–Dawley rats

, , , , , , & show all
Pages 474-483 | Received 23 Jul 2018, Accepted 25 Oct 2018, Published online: 20 Dec 2018
 

Abstract

In this study, the impact of dietary sn-2 palmitic triacylglycerol (sn-2 PTAG) on faecal lipids, calcium excretion and lipid metabolic alternation was investigated in Sprague–Dawley (SD) rats fed with high-fat diet containing either palm olein (PO, sn-2 palmitic acid (PA) of 14.8%), sn-2 PTAG50 (sn-2 PA of 56.4%) or sn-2 PTAG70 (sn-2 PA of 72.4%), respectively. After 4-week feeding period, SD rats fed with sn-2 PTAGs showed reduced faecal soap fatty acids, neutral lipid and calcium excretion compared to those of PO-fed rats, whereas a significant difference was only observed for the sn-2 PTAG70-fed rats (p < .05). Moreover, dietary sn-2 PTAG70 also showed a significant effect on decreasing serum triacylglycerol (TAG) level, reducing perirenal adipocyte size and regulating lipid metabolism in small intestine and perirenal adipose tissue of SD rats. Significantly increased mRNA levels of genes involved in intestinal lipid anabolism as well as lipid catabolism were both observed in the sn-2 PTAG70-fed rats (p < .05). Meanwhile, dietary sn-2 PTAG70 also significantly up-regulated lipolysis, mitochondrial fatty acid oxidation and thermogenesis-related gene and protein levels in perirenal adipose tissue, which might be correlated with the reduced perirenal adipocyte size. Taken together, our findings indicated that sn-2 PTAG70 may have some beneficial effects on intestinal lipid utilisation and lipid metabolic activity for energy supply in visceral adipose tissue.

Disclosure statement

The authors report no conflicts of interest.

Additional information

Funding

This work was supported by grants from the National Key Research and Development Program of China (Grant No. 2017YFC1600500), the Wilmar (Shanghai) Biotechnology Research and Development Center Co., Ltd. and the Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 910.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.