197
Views
14
CrossRef citations to date
0
Altmetric
feature articles

Effect of Blocked Core-Tube Diameter on Heat Transfer Performance of Internally Longitudinal Finned Tubes

, &
Pages 107-115 | Published online: 14 Jul 2010
 

Abstract

Three-dimensional turbulent flow and heat transfer in an internally finned tube with a blocked core-tube have been numerically studied by the realizable k − ε turbulence model with the wall-function method. The numerical method is validated by comparing the calculated results with experimental data. The range of ratio of blocked core-tube outside diameter to outer-tube inside diameter (d 0/D i ) is from 0.25 to 0.75. The computational results demonstrated that there exists an optimal ratio of (d 0/D i ) under both identical mass flow rate and identical pressure drop. The optimal ratio of (d 0/D i ), which is reduced with the increase of mass flow rate, is approximately 0.5 to 0.625 at given mass flow rate for both constant wall temperature and uniform wall heat flux. The optimal ratio of (d 0/D i ) at a given pressure drop is from 0.44 to 0.50, which is also slightly reduced with the increase of pressure drop. Furthermore, the optimal ratio of (d 0/D i ) is not sensitive to the number of cross-section wavy fins of an internally longitudinal finned tube, in the range of a fin wave number of 15–25.

ACKNOWLEDGMENTS

This work was supported by Higher Academy Young Teacher Foundation Project of Fok Ying-Tung Education Foundation (Grant 91056) and NSFC Fund for Creative Research Groups (No. 50521604).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 323.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.