132
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Integron occurrence is linked to reduced biocide susceptibility in multidrug resistant Pseudomonas aeruginosa

, , &
Pages 78-84 | Received 06 Aug 2016, Accepted 07 Dec 2016, Published online: 10 Mar 2017
 

Abstract

Objective: Integrons are gene acquisition systems commonly found in bacterial genomes that play a major role in the dissemination of resistance to antibiotics. This work aimed to study the relationship between the presence of integrons and the reduced susceptibility of multidrug-resistant (MDR) Pseudomonas aeruginosa isolates towards different groups of biocides.

Methods: The antimicrobial susceptibility patterns of 104 clinical isolates were determined against different antibiotics by the disk diffusion method. The isolates were also tested for their susceptibility to six biocides (glutaraldehyde, benzalkonium chloride, cetrimide, chlorhexidine gluconate, chlorocresol and gluconate, and phenyl mercuric nitrate) by agar dilution. The presence of integrons and resistance genes in MDR isolates were detected by polymerase chain reaction.

Results: Thirty-six Pseudomonas isolates were MDR, and the majority of these isolates showed reduced susceptibility to biocides. In the MDR isolates, Class I integron was detected in 22 isolates (61.1%), while Class II and III integrons were identified in only four isolates (11.1%), In addition, aacA4 and qacE genes were detected in 22 (61.1%) and 11 (30.5%) isolates, respectively. Integron I-positive isolates showed reduced susceptibility to tested biocides.

Conclusions: The current study reveals the presence of different classes of integrons, with class I being predominant. Class I integron may be responsible for generating MDR P. aeruginosa isolates with reduced susceptibility to biocides. This linkage between integrons and biocide resistance in MDR-Pseudomonas isolates is notable and could be clinically important. Strict antibiotic prescription policies and the adequate use of biocides could help in controlling this problem.

Acknowledgements

The authors would like to thank Prof. Tanya Dahms, Chemistry and Biochemistry Department, Faculty of Science, University of Regina, Canada for editing this manuscript.

Log in via your institution

Log in to Taylor & Francis Online

There are no offers available at the current time.

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.