59
Views
0
CrossRef citations to date
0
Altmetric
Article

Self-adaptive extreme learning machine-based prediction of roller length of hydraulic jump on rough bed

, &
Pages 152-162 | Received 30 Sep 2019, Accepted 16 Nov 2020, Published online: 01 Dec 2020
 

ABSTRACT

In this study, the roller length of hydraulic jumps occurring on rough beds is modeled using the Self-Adaptive Extreme Learning Machine (SAELM) method. For this purpose, the parameters influencing the roller length are specified and four different SAELM models are developed based on them. A superior model is also established by analyzing the modeling results. For the superior model, the statistical values of the Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE) and correlation coefficient are calculated to be 1.720, 6.369 and 0.969, respectively. Also, the results of the SAELM superior model are compared with the Multilayer Perceptron Neural Network (MLPNN) and Support Vector Machine (SVM) methods. The analysis of the SVM, MLPNN and SVM models results reveals the effectiveness of the SAELM model. In this study, the uncertainty analysis of the SAELM, MLPNN and SVM models is also performed and the prediction error interval of 95% for the SAELM model is obtained which varies from −0.112 to +0.134.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 173.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.