168
Views
0
CrossRef citations to date
0
Altmetric
Articles

Chaotic differential evolution algorithms for optimal design of water distribution networks

ORCID Icon & ORCID Icon
Pages 686-700 | Received 19 Mar 2022, Accepted 23 Sep 2022, Published online: 28 Oct 2022
 

ABSTRACT

Recently, coupling chaos theory with evolutionary algorithms (EAs) elevated further scope for improving EAs’ performance efficiency. In this view, the present study emphasizes investigating the influence of chaotic force on convergence properties of differential evolution (DE) algorithm in designing water distribution networks (WDNs). To this end, two novel chaos-directed DE models, Chaotic-DE and Chaotic-Fm-DE, are proposed. The Chaotic-DE model is formulated to enhance DE’s searchability and faster convergence by replacing every random phenomenon with a chaotic force. The Chaotic-Fm-DE model with a dynamic, chaotic mutation factor is developed to improve DE’s exploitation behavior. Essentially, these models differ from the previous chaos-directed EA models in how chaos ergodicity is simulated in DE mechanism. A novel scheme of non-sequential approach is used for this purpose. Further, their respective elitist models are formulated to promote the search in promising areas. Importantly, the elitism scheme developed saves the elite trial vectors to pass through the next generations. The results of proposed algorithms validated on five (new and rehabilitated) benchmark WDNs (whose dimensions vary from 8 to 454) demonstrate the enhanced search behavior of the chaotic models with solution precision and remarkable reduction in computational effort over the non-chaotic ones.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Data availability statement

The benchmark problems considered in the present study are taken from the Centre for Water Systems, benchmark problems, University of Exeter.

emps.exeter.ac.uk/engineering/research/cws/resources/benchmarks/pareto/

All the models or codes that support the findings of this study are available from the corresponding author.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 173.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.