1,584
Views
2
CrossRef citations to date
0
Altmetric
Articles

On the edge irregular reflexive labeling of corona product of graphs with path

, , , , &
Pages 53-59 | Received 27 Jan 2021, Accepted 12 May 2021, Published online: 02 Jun 2021

Abstract

We define a total k-labeling φ of a graph G as a combination of an edge labeling φe:E(G){1,2,,ke} and a vertex labeling φv:V(G){0,2,,2kv}, such that φ(x)=φv(x) if xV(G) and φ(x)=φe(x) if xE(G), where k= max {ke,2kv}. The total k-labeling φ is called an edge irregular reflexive k-labeling of G if every two different edges has distinct edge weights, where the edge weight is defined as the summation of the edge label itself and its two vertex labels. Thus, the smallest value of k for which the graph G has the edge irregular reflexive k-labeling is called the reflexive edge strength of G. In this paper, we study the edge irregular reflexive labeling of corona product of two paths and corona product of a path with isolated vertices. We determine the reflexive edge strength for these graphs.

2010 Mathematical Subject Classification:

1. Introduction

An edge irregular reflexive labeling is introduced by Ryan et al. [Citation25] and is inspired by the problems of an irregular assignment and an edge irregular total labeling. Let us start with a brief review of the origins and some background information of these labelings.

Chartrand et al. [Citation13] proposed a labeling problem in 1988, that is, determine the minimum value of parallel edges between every two vertices to ensure that a loopless multigraph has vertex irregularity. This problem is created as a consequence of Handshaking Lemma, i.e., no simple graph can have each distinct vertex degree, however, it is possible in multigraphs.

They defined this labeling problem as an edge k-labeling δ:E(G){1,2,,k} of a graph G such that the vertex weight is wδ(x)wδ(y) for all vertices x, yV(G) with xy, where wδ(x)=δ(xy) the summation is over all vertices y adjacent to x. Such labeling is called irregular assignment and the irregularity strength of G, s(G) is known as the minimum k for which G has an irregular assignment using labels not greater than k. In other words, irregularity strength is interpreted as the minimum number of parallel edges, such that every vertex has a distinct degree in multigraph. For further results, see papers [Citation6, Citation14, Citation17, Citation23, Citation24]. For comprehensive survey of graph labelings, please refer [Citation15].

Bača et al. [Citation10] introduced a total k-labeling ρ:V(G)E(G){1,2,,k} to be an edge irregular total k-labeling of a graph G if for every two different edges xy and xy of G one has wt(xy)=ρ(x)+ρ(xy)+ρ(y)wt(xy)=ρ(x)+ρ(xy)+ρ(y). The total edge irregularity strength, denoted by tes(G) is defined as the minimum k for which G has an edge irregular total k-labeling. Some other results on the total edge irregularity strength can be referred to [Citation2–5, Citation7, Citation11, Citation12, Citation21, Citation22, Citation26].

Therefore, Ryan et al. [Citation25] were subsequently combined these two labeling problems by allowing for the vertex labels representing as loops. They noticed that: (a) the vertex labels are even non-negative integers, which also representing the fact that each loop added 2 to the vertex degree; and (b) vertex label 0 is permissible as representing a loopless vertex.

Thus, they defined the edge irregular reflexive k-labeling as a combination of an edge labeling φe:E(G){1,2,,ke} and a vertex labeling φv:V(G){0,2,,2kv}, in which labeling φ is a total k-labeling of the graph G such that φ(x)=φv(x) if xV(G) and φ(x)=φe(x) if xE(G), where k= max {ke,2kv}. The total k-labeling φ is called an edge irregular reflexive k-labeling of G if for every two different edges xy, xy of G one has wt(xy)=φv(x)+φe(xy)+φv(y)wt(xy)=φv(x)+φe(xy)+φv(y). The smallest value of k for which such labeling exists is called the reflexive edge strength of G and is denoted by res(G). For more results of reflexive edge strength of graphs, see [Citation1, Citation8, Citation9, Citation16, Citation18–20, Citation27, Citation28].

This paper focuses on the edge irregular reflexive labeling of two classes of corona product of graphs, that is, corona product of two paths and corona product of a path with isolated vertices. All graphs considered here are simple, finite and undirected. At the end of this paper, we are able to determine the reflexive edge strength of these graphs with condition that they admit such labeling.

2. Significant lemma and conjecture

It is known that Lemma 1 is proved in [Citation25].

Lemma 1.

For every graph G, res(G) {|E(G)|3if |E(G)|2,3 (mod 6),|E(G)|3+1if |E(G)|2,3 (mod 6).  

The following conjecture is proved by Bača et al. [Citation9].

Conjecture 1.

Any graph G with maximum degree Δ(G) satisfies: res(G)=max {Δ+22,|E(G)|3+r} where r = 1 for |E(G)|2,3 (mod 6), and zero otherwise.

3. Corona product of two paths

Suppose Pn is a path of order n and Pm is another path of order m. The corona product of two paths, denoted by PnPm is defined as a graph obtained by taking one copy of Pn (with n vertices) and n copies of Pm, and then joining the i-th vertex of Pn to every vertex of the i-th copy of Pm.

Therefore, the vertex set and edge set of PnPm are defined as V(PnPm)={xi,yij:1in,1jm} and E(PnPm)={xiyij:1in,1jm}{yijyij+1:1in,1jm1}{xixi+1:1in1}, respectively.

The following theorem shows the edge irregular reflexive labeling on PnPm and its reflexive edge strength, res(PnPm).

Theorem 1.

For n2 and m2, res(PnPm)={2nm13, 2nm13+1,if nm2 (mod 3),if nm2 (mod 3).  

Proof.

Note that the graph PnPm has 2nm1 edges. By using Lemma 1, we obtain the following lower bound: res(PnPm)k={2nm13,if nm2 (mod 3),2nm13+1, if nm2 (mod 3).  

It clearly shows that k is odd only when n, m1 (mod 3) or n, m2 (mod 3), otherwise, k is even.

Now, we prove that k is the upper bound for res(PnPm), where n, m2. First, we define a total k-labeling φ of PnPm by labeling the vertex set and edge set.

  1. All vertices xi and yij are labeled with the even integers in the following ways.

    1. φ(x1)=0,φ(x2)=2m13, otherwise, φ(xi)=2im13 if i3.

    2. For 1jm,φ(y1j)=2j22, otherwise, φ(yij)=2im13 if i2.

  2. The edges xiyij,yijyij+1 and xixi+1 are labeled as follows.

    1. φ(x1y1j)=1 if j is odd, whereas φ(x1y1j)=2 if j is even. For 1jm,φ(x2y2j)=j, otherwise, φ(xiyij)=2m(i1)4im13+j if i3.

    2. For 1jm1,φ(y1jy1j+1)=m+2j, otherwise, φ(yijyij+1)=m(2i1)4im13+j if i2.

    3. The edges xixi+1 are labeled as follows: φ(xixi+1)={2m2m13, if i=1,2,2im2im132(i+1)m13,if i3.  

Evidently, all vertex labels and edge labels are at most k under the labeling φ, thus, labeling φ is a total k-labeling of PnPm. Next, we show the edge weights of all edges in PnPm are distinct under the total k-labeling φ.

  1. wtφ(xiyij)=φ(xi)+φ(xiyij)+φ(yij).

    1. For j odd, wtφ(x1y1j)=0+1+2j22=1+j1=j, whereas for j even, wtφ(x1y1j)=0+2+2j22=2+j2=j.

    2. For 1jm,wtφ(x2y2j)=2m13+j+2im13=2(m13+2m13)+j=2m+j.

    3. For i3 and 1jm,wtφ(xiyij)=2im13+2m(i1)4im13+j+2im13=2m(i1)+j.

  2. wtφ(yijyij+1)=φ(yij)+φ(yijyij+1)+φ(yij+1).

    1. For 1jm1,wtφ(y1jy1j+1)=2j22+m+2j+2(j+1)22=2(j1)+m+2j=m+j.

    2. For i2 and 1jm1,wtφ(yijyij+1)=2im13+m(2i1)4im13+j+2im13=m(2i1)+j.

  3. wtφ(xixi+1)=φ(xi)+φ(xixi+1)+φ(xi+1).

    1. wtφ(x1x2)=0+2m2m13+2m13=2m.

    2. wtφ(x2x3)=2m13+2m2m13+2(i+1)m13=2m+23m13=2m+2m=4m.

    3. For i3,wtφ(xixi+1)=2im13+2im2im132(i+1)m13+2(i+1)m13=2im.

We can see that the edge weights of all edges in PnPm are distinct integers from the set {1,2,,2nm1}, in other words, every edge has a distinct weight. Thus, the total k-labeling φ is an edge irregular reflexive k-labeling of PnPm and k is the reflexive edge strength of PnPm. This completes the proof. □

and show the corresponding edge irregular reflexive k-labelings of P4P4 and P4P5.

Figure 1. The edge irregular reflexive 11-labeling of P4P4.

Figure 1. The edge irregular reflexive 11-labeling of P4⊙P4.

Figure 2. The edge irregular reflexive 14-labeling of P4P5.

Figure 2. The edge irregular reflexive 14-labeling of P4⊙P5.

4. Corona product of a path with isolated vertices

Assume Pn is a path of order n and mK1 is a disjoint union of m copies of isolated vertex. The corona product of a path with m copies of isolated vertex, denoted by PnmK1 is defined as a graph obtained by taking one copy of Pn (with n vertices) and n copies of mK1 by joining the i-th vertex of Pn to every vertex of the i-th copy of mK1. Note that PnmK1 is also known as a subclass of caterpillars.

Therefore, the vertex set and edge set of PnmK1 are V(PnmK1)={xi,yij:1in,1jm} and E(PnmK1)={xixi+1:1in1}{xiyij:1in,1jm}, respectively. The number of edges of PnmK1, denoted by |E(PnmK1)| is n(m+1)1. Thus, according to Lemma 1, (1) res(PnmK1)k={n(m+1)13,if n(m+1)12,3 (mod 6),n(m+1)13+1,if n(m+1)12,3 (mod 6).  (1)

We notice that k is odd when n1 (mod 3),m1 (mod 6) or n2 (mod 3),m3 (mod 6) or n2 (mod 6),m0 (mod 6) or n, m4 (mod 6). Otherwise, k is even.

The following lemmas show the reflexive edge strength of PnmK1 by distinguishing m into odd and even cases. First, we deal with PnmK1 when m is odd.

Lemma 2.

For n2 and m odd, res(PnmK1)={n(m+1)13,if n(m+1)12,3 (mod 6),n(m+1)13+1,if n(m+1)12,3 (mod 6).  

Proof.

As a fact that PnmK1 has n(m+1)1 edges. According to Lemma 1, the lower bound for res(PnmK1) is shown as (1). Now, we prove that k is the upper bound for res(PnmK1) when m is odd. We first define a total k-labeling φ of PnmK1.

  1. All vertices xi and yij are labeled with the even integers in the following ways.

    1. φ(x1)=0. For m1 (mod 6),i2 (mod 3) or m3 (mod 6),i4 (mod 3),φ(xi)=i(m+1)+23. Otherwise, φ(xi)=i(m+1)23.

    2. φ(yij)={0,if i=1,m1 (mod 6),1j2(m+2)3, or m3,5 (mod 6),1j2m3,if i=2,m1 (mod 6),1jm+33,  or m3,5 (mod 6),1jm3,2(m+2)3,if i=1,m1 (mod 6),2(m+2)3+1jm, or i=2,m1 (mod 6),m+33+1jm,2m3,if i=1,m3,5 (mod6),2m3+1jm, or i=2,m3,5 (mod 6),m3+1jm,φ(xi),i3,1jm.        

  2. The edges xiyij and xixi+1 are labeled as follows.

    1. φ(x1y1j)=j if m1 (mod 6),1j 2(m+2)3 or m3,5 (mod 6),1j 2m3, otherwise, φ(x1y1j)=jφ(x2). Next, φ(x2y2j)=m+1φ(x2)+j if m1 (mod 6),1j m+33 or m3,5 (mod 6),1jm3, otherwise, φ(x2y2j)=m+12φ(x2)+j. For i3 and 1jm,φ(xiyij)=(i1)(m+1)2φ(xi)+j.

    2. φ(x1x2)=m13 if m1 (mod 6), whereas φ(x1x2)=m+13 if m3,5 (mod 6). Next, for m1 (mod 6),i2,3 (mod 3) or m3 (mod 6),i4 (mod 3),φ(xixi+1)=i(m+1)2φ(xi)m33. For m5 (mod 6),i2,φ(xixi+1)=i(m+1)2φ(xi)m+13. Otherwise, φ(xixi+1)=i(m+1)2φ(xi)m+33.

Evidently, all vertex labels and edge labels are at most k under the labeling φ, thus, labeling φ is a total k-labeling of PnmK1. Next, we show the edge weights of all edges in PnmK1 are distinct under the total k-labeling φ.

  1. wtφ(xiyij)=φ(xi)+φ(xiyij)+φ(yij).

    1. For i = 1,

      1. wtφ(x1y1j)=0+j+0=j if m1 (mod6),1j 2(m+2)3 or m3,5 (mod6) 1j2m3.

      2. wtφ(x1y1j)=0+jφ(x2)+2(m+2)3=j2(m+2)3+2(m+2)3=j if m1 (mod6),2(m+2)3+1jm.

      3. wtφ(x1y1j)=0+jφ(x2)+ 2m3=j2m3+2m3=j if m3,5 (mod 6),2m3+1jm.

    2. For i = 2,

      1. when m1 (mod 6),wtφ(x2y2j)=i(m+1)+23+m+1φ(x2)+j+0=i(m+1)+23+m+1i(m+1)+23+j=m+1+j if 1j m+33, otherwise, wtφ(x2y2j)=i(m+1)+23+m+12φ(x2)+j+2(m+2)3=i(m+1)+23+m+12i(m+1)+23+j+i(m+1)+23=m+1+j if m+33+1jm.

      2. when m3,5 (mod 6),wtφ(x2y2j)=i(m+1)23+m+1φ(x2)+j+0=i(m+1)23+m+1i(m+1)23+j=m+1+j if 1jm3, otherwise, wtφ(x2y2j)=i(m+1)23+m+12φ(x2)+j+2m3=i(m+1)23+m+12i(m+1)23+j+i(m+1)23=m+1+j if m3+1jm.

    3. For i3 and 1jm,

      1. wtφ(xiyij)=i(m+1)23+(i1)(m+1)2φ(xi)+j+i(m+1)23=i(m+1)23+(i1)(m+1)2i(m+1)23+j+i(m+1)23=(i1)(m+1)+j if m1 (mod 6),i0,1 (mod 3) or m3 (mod 6),i0,2 (mod 3) or m5 (mod 6),i3.

      2. wtφ(xiyij)=i(m+1)+23+(i1)(m+1)2φ(xi)+j+i(m+1)+23=i(m+1)+23+(i1)(m+1)2i(m+1)+23+j+i(m+1)+23=(i1)(m+1)+j if m1 (mod 6),i2 (mod 3) or m3 (mod 6),i1 (mod 3). Take note that i1,2 in (iii)(A) and (iii)(B).

  2. wtφ(xixi+1)=φ(xi)+φ(xixi+1)+φ(xi+1).

    1. For i = 1,

      1. wtφ(x1x2)=0+m13+(i+1)(m+1)+23=m+13+2m+43=13[(m1)+2(m+2)]=m+1 if m1 (mod 6).

      2. wtφ(x1x2)=0+m+13+(i+1)(m+1)23=m+13+2m3=13[(m+3)+2m]=m+1 if m3 (mod 6).

      3. wtφ(x1x2)=0+m+13+(i+1)(m+1)23=m+13+2m3=13[(m+1)+(m+2)]=m+1 if m5 (mod 6).

    2. For i2,

      1. when i0 (mod 3),wtφ(xixi+1)=i(m+1)23+i(m+1)2φ(xi)m33+(i+1)(m+1)23=i(m+1)23+i(m+1)2i(m+1)23m33+(i+1)(m+1)23=i(m+1)+13[i(m+1)(m1)+i(m+1)+(m1)]=i(m+1) if m1 (mod 6), otherwise, wtφ(xixi+1)=i(m+1)23+i(m+1)2φ(xi)m+33+(i+1)(m+1)+23=i(m+1)+13[i(m+1)(m+3)+i(m+1)+(m+3)]=i(m+1) if m3 (mod 6).

      2. when i1 (mod 3),wtφ(xixi+1)=i(m+1)23+i(m+1)2φ(xi)m+33+(i+1)(m+1)+23=i(m+1)+13{[i(m+1)2](m+5)+[i(m+1)2]+(m+5)}=i(m+1) if m1 (mod 6), otherwise, wtφ(xixi+1)=i(m+1)+23+i(m+1)2φ(xi)m33+(i+1)(m+1)23=i(m+1)+13{[i(m+1)+2](m3)+[i(m+1)+2]+(m3)}=i(m+1) if m3 (mod 6).

      3. when i2 (mod 3),wtφ(xixi+1)=i(m+1)+23+i(m+1)2φ(xi)m33+(i+1)(m+1)23=i(m+1)+13{[i(m+1)+2](m1)+[i(m+1)+2]+(m1)}=i(m+1) if m1 (mod 6), otherwise, wtφ(xixi+1)=i(m+1)23+i(m+1)2φ(xi)m+33+(i+1)(m+1)23=i(m+1)+13{[i(m+1)2](m+3)+[i(m+1)2]+(m+3)}=i(m+1) if m3 (mod 6).

      4. wtφ(xixi+1)=i(m+1)23+i(m+1)2φ(xi)m+13+(i+1)(m+1)23=i(m+1)+13[i(m+1)(m+1)+i(m+1)+(m+1)]=i(m+1) if m5 (mod 6).

It clearly shows that the edge weights of all edges in PnmK1 are distinct integers from the set {1,2,,n(m+1)1}, which means that all edges have distinct weights. Thus, the total k-labeling φ is an edge irregular reflexive k-labeling of PnmK1 and k is the reflexive edge strength of PnmK1, where m is odd. This completes the proof. □

and show the corresponding edge irregular reflexive 7-labeling of P53K1 and edge irregular reflexive 8-labeling of P45K1, respectively.

Figure 3. An edge irregular reflexive 7-labeling for P53K1.

Figure 3. An edge irregular reflexive 7-labeling for P5⊙3K1.

Figure 4. An edge irregular reflexive 8-labeling for P45K1.

Figure 4. An edge irregular reflexive 8-labeling for P4⊙5K1.

In the next lemma, we deal with PnmK1 when m is even.

Lemma 3.

For n2 and m even, res(PnmK1)={n(m+1)13, if n(m+1)12,3 (mod 6),n(m+1)13+1, if n(m+1)12,3 (mod 6). 

Proof.

Since the number of edges of PnmK1 is n(m+1)1, by Lemma 1, we obtain the lower bound as shown in (1). Now, we prove that k is the upper bound for res(PnmK1) when m is even. We first define a total k-labeling φ of PnmK1.

  1. All vertices xi and yij are labeled as follows.

    1. For i3,

      1. φ(x1)=0. Then, φ(xi)=i(m+1)+23 if m0 (mod 6),i3,4 (mod 6) or m2 (mod 6),i1 (mod 6) or m4 (mod 6),i2,3 (mod 6). Next, φ(xi)=i(m+1)3 if m0 (mod 6),i5 (mod 6) or m4 (mod 6),i1 (mod 6). Otherwise, φ(xi)=i(m+1)23.

      2. The vertices φ(yij) are labeled as follows. φ(yij)={0,if i=1,m0,2 (mod 6),1j2m3,or m4 (mod 6),1j2(m+2)3,if i=2,m0 (mod 6),1jm33,or m2 (mod 6),1jm3, or m4 (mod 6),1jm+33,2m3,if i=1,m0,2 (mod 6),2m3+1jm,or i=2,m0 (mod 6),m33+1jm,or m2 (mod 6),m3+1jm,2(m+2)3,φ(xi),if i=1,m4 (mod 6),2(m+2)3+1jm,or i=2,m4 (mod 6),m+33+1jm,otherwise.       

    2. For i = 3 and 1jm,φ(x3)=φ(y3j)=m.

  2. The edges xiyij and xixi+1 are labeled as follows. .

    1. For i3,

      1. φ(x1y1j)=j if m0,2 (mod 6),1j 2m3 or m4 (mod 6),1j 2(m+2)3, otherwise, φ(x1y1j)=jφ(x2). Next, φ(x2y2j)=m+1φ(x2)+j if m0 (mod6),1jm33 or m2 (mod 6),1jm3 or m4 (mod 6),1j m+33, otherwise, φ(x2y2j)=m+12φ(x2)+j. For i4,1jm,φ(xiyij)=(i1)(m+1)2φ(xi)+j.

      2. φ(x1x2)=m+13 if m0,2 (mod 6), otherwise, φ(x1x2)=m13. Next, φ(x2x3)=i(m+1)2φ(xi)m23 if m0,2 (mod 6), otherwise, φ(x2x3)=i(m+1)2φ(xi)m43. For i4, φ(xixi+1)={i(m+1)2φ(xi)m23,if m0(mod 6),i2(mod 6),   or m2(mod  6),i1(mod 2),i(m+1)2φ(xi)m43,if m4(mod 6),i3(mod 6),i(m+1)2φ(xi)m3,if m4(mod 6),i3(mod 6),i(m+1)2φ(xi)m+43,otherwise.     

    2. For i = 3,

      1. φ(x3y3j)=2+j if 1jm.

      2. φ(x3x4)=i(m+1)2φ(xi)m+43 if m0,2(mod 6), otherwise, φ(x3x4)=i(m+1)2φ(xi)m3 if m4(mod 6).

Clearly, all vertex labels and edge labels are at most k under the labeling φ, thus, labeling φ is a total k-labeling of PnmK1. Using similar approach as in the proof of Lemma 2, we are able to find the edge weights of all edges in PnmK1. wtφ(xixi+1)=φ(xi)+φ(xixi+1)+φ(xi+1) and wtφ(xiyij)=φ(xi)+φ(xiyij)+φ(yij).

Therefore, the results of edge weights are: (a) wtφ(xixi+1)=m+1 if i = 1, otherwise, wtφ(xixi+1)=i(m+1) if i2; and (b) wtφ(xiyij)=j if i = 1, wtφ(xiyij)=m+1+j if i = 2, wtφ(xiyij)=2(m+1)+j if i = 3, otherwise, wtφ(xiyij)=(i1)(m+1)+j if i4.

We can see that the edge weights of all edges in PnmK1 are distinct integers from the set {1,2,,n(m+1)1}, in other words, every edge has a distinct weight. Thus, the total k-labeling φ is an edge irregular reflexive k-labeling of PnmK1 and k is the reflexive edge strength of PnmK1, where m is even. This completes the proof. □

and show the corresponding edge irregular reflexive 4-labeling of P42K1 and edge irregular reflexive 6-labeling of P34K1, respectively.

Figure 5. An edge irregular reflexive 4-labeling for P42K1.

Figure 5. An edge irregular reflexive 4-labeling for P4⊙2K1.

Figure 6. An edge irregular reflexive 6-labeling for P34K1.

Figure 6. An edge irregular reflexive 6-labeling for P3⊙4K1.

Combining Lemmas 2 and 3, we obtain the concluding result for the reflexive edge strength of corona product of path with mK1 as follows.

Theorem 2.

For n2 and all positive integers m, res(PnmK1)={n(m+1)13, if n(m+1)12,3 (mod 6),n(m+1)13+1,if n(m+1)12,3 (mod 6).  

5. Conclusion

This paper has successfully determined the reflexive edge strength of corona product of graphs, that is, corona product of two paths and corona product of a path with isolated vertices, where these graphs have also proven to admit the edge irregular reflexive labeling. Moreover, these generalized results are not only strengthened the Conjecture 1, but also thoroughly replaced the weak and restricted results of the previous paper [Citation19]. Last but not least, this interesting study found a problem that worths for further investigation, that is:

Problem 1.

Determine the reflexive edge strength of corona product of a path Pn with m copies of complete graphs, i.e., res(PnmKt), where n,m,t2 and all positive integers m.

Acknowledgement

The authors would like to thank the referees for their valuable comments that improved the paper.

Disclosure statement

No potential competing interest was reported by the authors.

Additional information

Funding

This research is supported by the Fundamental Research Grant Scheme (FRGS), Phase 1/2020, Ministry of Higher Education, Malaysia with Reference Number FRGS/1/2020/STG06/UMT/02/1 (Grant Vot. 59609).

References

  • Agustin, I. H., Utoyo, I, Venkatachalam, M. (2020). Edge irregular reflexive labeling of some tree graphs. IOP Conf. Ser. J. Phy. Conf. Ser. 1543: 012008.
  • Ahmad, A., Bača, M., Bashir, Y, Siddiqui, M. K. (2012). Total edge irregularity strength of strong product of two paths. Ars. Comb. 106: 449–459.
  • Ahmad, A., Bača, M, Siddiqui, M. K. (2014). On edge irregular total labeling of categorical product of two cycles. Theory Comput. Syst. 54(1): 1–12.
  • Ahmad, A., Siddiqui, M. K, Afzal, D. (2012). On the total edge irregular strength of zigzag graphs. Australasian J. Combin. 54: 141–149.
  • Al-Mushayt, O., Ahmad, A, Siddiqui, M. K. (2012). On the total edge irregularity strength of hexagonal grid graphs. Australasian J. Combin. 53: 263–271.
  • Amar, D, Togni, O. (1998). Irregularity strength of trees. Discrete Math. 190(1-3): 15–38.
  • Anholcer, M, Palmer, C. (2012). Irregular labelings of circulant graphs. Discrete Math. 312(23): 3461–3466.
  • Bača, M., Irfan, M., Ryan, J., Semaničová-Feňovčíková, A, Tanna, D. (2019). Note on edge irregular reflexive labelings of graphs. AKCE Int. J. Graphs Comb. 16(2): 145–157.
  • Bača, M., Irfan, M., Ryan, J., Semaničová-Feňovčíková, A, Tanna, D. (2017). On the edge irregular reflexive labelings for the generalized friendship graphs. Mathematics 5(4): 67.
  • Bača, M., Jendrol’, S., Miller, M, Ryan, J. (2007). On irregular total labelings. Discrete Math. 307(11-12): 1378–1388.
  • Bača, M, Siddiqui, M. K. (2014). Total edge irregularity strength of generalized prism. Appl. Math. Comp. 235: 168–173.
  • Brandt, S., Miškuf, J, Rautenbach, D. (2008). On a conjecture about edge irregular total labelings. J. Graph Theory 57(4): 333–343.
  • Chartrand, G., Jacobson, M. S., Lehel, J., Oellermann, O. R., Ruiz, S, Saba, F. (1988). Irregular networks. Congr. Numer. 64: 187–192.
  • Dinitz, J. H., Garnick, D. K, Gyárfás, A. (1992). On the irregularity strength of the m × n grid. J. Graph Theory 16(4): 355–374.
  • Gallian, J. A. (2019). A dynamic survey of graph labeling. Electron. J. Comb. #DS6: 1–553.
  • Guirao, J. L. G., Ahmad, S., Siddiqui, M. K, Ibrahim, M. (2018). Edge irregular reflexive labeling for the disjoint union of generalized Petersen graph. Mathematics 6(12): 304.
  • Gyárfás, A. (1998). The irregularity strength of Km,m is 4 for odd m. Discrete Math. 71: 273–274.
  • Ibrahim, M., Majeed, S, Siddiqui, M. K. (2020). Edge irregular reflexive labeling for star, double star and caterpillar graphs. TWMS J. App. Eng. Math. 10(3): 718–726.
  • D. Indriati, Widodo, I. Rosyida, (2020). Edge irregular reflexive labeling on corona of path and other graphs. IOP Conf. Series: Journal of Physics: Conf. Series 1498: 012004.
  • Irfan, M., Bača, M, Semaničová-Feňovčíková, A. On reflexive edge strength of generalized prism graphs. Electron. J. Graph Theory Appl. doi:10.3390/math5040067
  • Ivančo, J, Jendrol', S. (2006). Total edge irregularity strength of trees. Discuss. Math. Graph Theory 26(3): 449–456.
  • Jendrol’, S., Miškuf, J, Soták, R. (2010). Total edge irregularity strength of complete graphs and complete bipartite graphs. Discrete Math. 310(3): 400–407.
  • Lehel, J. (1991). Facts and quests on degree irregular assignment. In: Graph Theory, Combinatorics and Applications; New York, USA: Wiley, pp. 765–782.
  • Nierhoff, T. (2000). A tight bound on the irregularity strength of graphs. SIAM J. Discrete Math. 13(3): 313–323.
  • Ryan, J., Munasinghe, B, Tanna, D. (2017) Reflexive irregular labelings, preprint.
  • Siddiqui, M. K. (2012). On the edge irregularity strength of a categorical product of a cycle and a path. AKCE Int. J. Graphs Comb. 9(1): 43–52.
  • Tanna, D., Ryan, J, Semaničová-Feňovčíková, A. (2017). Edge irregular reflexive labeling of prisms and wheels. Australasian J. Combin. 69(3): 394–401.
  • Zhang, X., Ibrahim, M., Bokhary, S. A. H, Siddiqui, M. K. (2018). Edge irregular reflexive labeling for the disjoint union of gear graphs and prism graphs. Mathematics 6(9): 142.