51
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Face irregular evaluations of family of grids

, , &
Received 05 Dec 2022, Accepted 29 May 2024, Published online: 17 Jul 2024

Abstract

Let G=(V,E,F) be a connected plane graph. Let ρ:α(V)β(E)γ(F){1,2,,k} be a k-labeling where α,β,γ{0,1} and (α,β,γ)(0,0,0). The weight of a face f under ρ is defined as Wt(f)=αvfρ(v)+βefρ(e)+γρ(f). Then ρ is called a face irregular labeling of type (α,β,γ) if Wt(f)Wt(g) for any two faces fg. The face irregular strength of G is the smallest integer k such that G admits a face irreg ular k-labeling. In this paper we determine the face irregular strength of the grid graph Pn+1Pm+1 under a labeling of type (α,β,γ).

1 Introduction

By a graph G=(V,E,F), we mean a simple, finite, undirected plane graph with vertex set V, edge set E and face set F. For a positive integer k, a k-labeling of type (α,β,γ), where α,β,γ{0,1} is a mapping ρ from the set of graph elements to the set of positive integers {1,2,3,,k}. If the domain of k-labeling of type (α,β,γ) is V(G), E(G), F(G), V(G)E(G), V(G)F(G), E(G)F(G), V(G)E(G)F(G), then we call this a vertex k-labeling of type (1, 0, 0), edge k-labeling of type (0, 1, 0), face k-labeling of type (0, 0, 1), vertex-edge k-labeling of type (1, 1, 0), vertex-face k-labeling of type (1, 0, 1), edge-face k-labeling of type (0, 1, 1), vertex-edge-face k-labeling of type (1, 1, 1) respectively.

Let G=(V,E,F) be a connected plane graph. Let ρ:α(V)β(E)γ(F){1,2,,k} be a k-labeling where α,β,γ{0,1} and (α,β,γ)(0,0,0). The weight of a face f under ρ is defined as Wt(f)=αvfρ(v)+βefρ(e)+γρ(f)

Then ρ is called a face irregular labeling of type (α,β,γ) if Wt(f)Wt(g) for any two faces fg. The face irregular strength of G is the smallest integer k such that G admits a face irregular k-labeling. In this paper we determine the face irregular strength of the grid graph Pn+1Pm+1 under a labeling of type (α,β,γ)

A k-labeling ρ of type (α,β,γ) of the plane graph G will be face irregular k-labeling of type (α,β,γ) of the plane graph G, if for every two different faces f and g of G, we have Wtρ(α,β,γ)(f)Wtρ(α,β,γ)(g)

The minimum number k for which the graph G admits a face irregular k-labeling of type (α,β,γ) is called the face irregularity strength of type (α,β,γ) of the plane graph G and it is denoted by fs(α,β,γ)(G). G. Chartrand, et al. in [Citation10] introduced edge k-labeling phi of a graph G such that wϕ(x)wϕ(y) for all vertices x,yV(G) for distinct x and y. Such labelings were called irregular assignments and the irregularity strength s(G) of a graph G is known as the minimum k for which G has an irregular assignment using labels at most k and this parameter has attracted attention to [Citation12, Citation16]. Ahmed, A et al. gives the lower bound for the edge irregular strength and prove it for several families of graphs and generate relation between tes(G) and es(G) in [Citation1].

Motivated by this notion Bača et al. in [Citation8] defined a vertex irregular total k-labeling of a graph G to be a total labeling of G;λ:V(G)E(G){1,2,,k}, such that the total vertex-weights wtλ(v)=λ(v)+ΣvuE(G)λ(vu) are different for all vertices i.e., wtλ(v)wtλ(u) where uv and v,uV(G). They also defined the total labeling T:V(G)E(G){1,2,,k}, such that the total edge-weights wtλ(v)=λ(v)+ΣvuE(G)λ(vu) are different for all edges i.e., wtλ(uv)wtλ(vu) for all different edges uv and uv, and uv;uvE(G). The total edge irregularity strength, tes(G) is defined as the minimum k for which G has the edge irregular total k-labeling. Some of the interesting results on total vertex irregular strength and total edge irregular strength can be found in [Citation2–4, Citation9]. For a deep survey on the irregularity strength, one can see [Citation15]. The research papers by Tongi [Citation7], Dimitz et al. [Citation11], Gyárfás [Citation13] and Nierhoff [Citation16] present recent results on irregularity strength. Note, that for some classes of graphs and some values of parameters α, β and γ, the corresponding graph invariant is infinite.

In this article, the cases under consideration are vertex, edge, face, vertex-face and edge-face. We have focussed on finding the exact tight lower bound for the face irregularity strength of plane grid graphs under labeling ρ of type (α,β,γ).

Theorem 1.

[Citation5] Let G=(V,E,F) be a 2 connected plane graph with ni i sided faces, i3. Let α,β,γ{0,1}, a=min{i:ni0} and b=max{i:ni0}. Then the face irregularity strength of type α, β, γ of the plane graph G is fs(α,β,γ)(G)(α+β)a+γ+|F(G)|1(α+β)b+γ

Theorem 2.

[Citation5] Let α,β,γ{0,1}. If n3 then fs(α,β,γ)(Cn)={2,ifγ = 1,,ifγ = 0.

Since the face irregularity strength of type (α,β,γ) for C4=P2P2 holds.

Theorem 3.

[Citation5] Let Ln'PnP2, n3, be a ladder and let α,β,γ{0,1}. Then fs(α,β,γ)(Ln)={n,if (α,β,γ)=(0,0,1),n+24,if (α,β,γ)=(1,0,0);(0,1,0),n+35,if (α,β,γ)=(1,0,1);(0,1,1),n+68,if (α,β,γ)=(1,1,0),n+79,if (α,β,γ)=(1,1,1)

Theorem 4.

[Citation6] Let m,n2 be positive integer and Gnm=Pn+1Pm+1 be grid graph, then tfs(1,1,0)(G)=mn+78

2 Face Irregular strength of grid graph Pn+1Pm+1

Let G=Pn+1Pm+1, where 1mn,

V(Pn+1Pm+1)={vij:i=1,2,,n+1 , j=1,2,,m+1} and E(Pn+1Pm+1)={vijvi+1j:i=1,2,,n , j=1,2,,m+1}{vijvij+1:i=1,2,,n+1 , j=1,2,,m}.

Theorem 5.

Let m2 be a positive integers and G=Pn+1Pm+1 be grid graph, then fs(1,0,0)(G)=mn+34

Proof.

According to (1) it is sufficient to show that fs(1,0,0)(G)mn+34. So we define the face irregular k-labeling ρ of type (1, 0, 0) of Gnm in the following way ρ(vij)={j4+m2i+14+m2i4,if i=1,3,5,,n; n1(2)  or  i=1,3,5,,n+1; n0(2)and j=1,3,5,,m; m1(2)  or  j=1,3,5,,m+1; m0(2)j4+m2i+14+m2i4,if i=1,3,5,,n; n1(2)  or  i=1,3,5,,n+1; n0(2)and j=2,4,6,,m+1; m1(2) or  j=2,4,6,,m; m0(2)j+24+m2i4+m2i14, if i=2,4,6,,n+1; n1(2)  or  i=2,4,6,,n; n0(2)and j=1,3,5,,m; m1(2)  or  j=1,3,5,,m+1; m0(2)j+24+m2i4+m2i14,if i=2,4,6,,n+1; n1(2)  or  i=2,4,6,,n; n0(2)and j=2,4,6,,m+1; m1(2) or  j=2,4,6,,m; m0(2)

The weight of the face f under labeling ρ of type (1, 0, 0) is defined as Wtρ(1,0,0)(fij)=ρ(vij)+ρ(vij+1)+ρ(vi+1j)+ρ(vi+1j+1)

The differences between the weights of the horizontal faces will be calculated as follows: For i=1,3,5,,n; n1(2)or i=1,3,5,,n+1; n0(2) andj=1,3,5,,m; m1(2)or j=1,3,5,,m+1; m0(2) orj=2,4,6,,m+1; m1(2)or j=2,4,6,,m; m0(2)

Let, g=(fij+1) and h=(fij) be two horizontal consecutive faces. Then, Wtρ(1,0,0)(g)Wtρ(1,0,0)(h)=(ρ(vij+1)+ρ(vij+2)+ρ(vi+1j+1)+ρ(vi+1j+2))(ρ(vij)+ρ(vij+1)+ρ(vi+1j)+ρ(vi+1j+1))=j4+j+14+j+24+j+34+2mi4+2mi+14+1j4j+14j+24j+342mi42mi+14=1For i=2,4,6,,n+1; n1(2)or i=2,4,6,,n; n0(2) andj=1,3,5,,m; m1(2)or j=1,3,5,,m+1; m0(2) orj=2,4,6,,m+1; m1(2)or j=2,4,6,,m; m0(2)Wtρ(1,0,0)(g)Wtρ(1,0,0)(h)=(ρ(vij+1)+ρ(vij+2)+ρ(vi+1j+1)+ρ(vi+1j+2))(ρ(vij)+ρ(vij+1)+ρ(vi+1j)+ρ(vi+1j+1))=j4+j+14+j+24+j+34+mi4+mi+24+mi14+mi+14+1j4j+14j+24j+34mi4mi+24mi14mi+14=1

Now we compute differences between the weights of the vertical faces will be calculated as follows: For i=1,3,5,,n; n1(2)or i=1,3,5,,n+1; n0(2) andj=1,3,5,,m; m1(2)or j=1,3,5,,m+1; m0(2) orj=2,4,6,,m+1; m1(2)or j=2,4,6,,m; m0(2)

Let, g=(fi+1j) and h=(fij) be two vertical consecutive faces. Then, Wtρ(1,0,0)(g)Wtρ(1,0,0)(h)=(ρ(vi+1j)+ρ(vi+1j+1)+ρ(vi+2j)+ρ(vi+2j+1))(ρ(vij)+ρ(vij+1)+ρ(vi+1j)+ρ(vi+1j+1))=mi+34+mi+24mi+14mi4=mFor i=2,4,6,,n+1; n1(2)or i=2,4,6,,n; n0(2) andj=1,3,5,,m; m1(2)or j=1,3,5,,m+1; m0(2) orj=2,4,6,,m+1; m1(2)or j=2,4,6,,m; m0(2)Wtρ(1,0,0)(g)Wtρ(1,0,0)(h)=(ρ(vi+1j)+ρ(vi+1j+1)+ρ(vi+2j)+ρ(vi+2j+1))(ρ(vij)+ρ(vij+1)+ρ(vi+1j)+ρ(vi+1j+1))=mi+24+mi+14mi4mi14=m

Hence it follows that the weights of any two faces f and g are distinct. Complete the proof by clearly giving the two required inequalities. □

Theorem 6.

Let m2 be a positive integers and G=Pn+1Pm+1 be grid graph, then fs(0,1,0)(G)=3+mn4

Proof.

We define a face irregular k-labeling ρ of type (0, 1, 0) of G in the following way f(vijvij+1)={1+m(i21), i=1,2,,2kmand  j=1,2,,mk, i=2km+1,,n+1and j=1,2,,mf(vijvi+1j)={j2,i=1,2,3,,2km1 andj=1,2,3,,m+1mkm+1k2i2km+12+mkm+1k2(i2km)+j2, i=2km,2km+1 andj=1,3,5,m; m1(2) orj=1,3,5,m+1; m0(2)mkm+1k2i2km+12+mkm+1k2(i2km)+j2, i=2km,2km+1 andj=2,4,6,m+1; m1(2) orj=2,4,6,m; m0(2)mkm+1k2+mkm+1k2+m2i2km12 i=2km+2,,n1 and+m2i2km22+j2, j=1,3,5,m; m1(2) orj=1,3,5,,m+1; m0(2)mkm+1k+m2i2km12+m2i2km22+j2, i=2km+2,,n1 andj=2,4,6,,m+1; m1(2) orj=2,4,6,,m; m0(2)

The weight of the face f under the labeling ρ of type (0, 1, 0) is Wtρ(0,1,0)(fij)=ρ(vijvij+1)+ρ(vijvi+1j)+ρ(vij+1vi+1j+1)+ρ(vi+1jvi+1j+1)

Now we calculate differences between the weights of the horizontal faces as follows:

Let, g=fij+1 and h=fij be two horizontal consecutive faces.

Then for i=1,2,,2km1 and j=1,2,,m+1 Wt(0,1,0)(g)Wt(0,1,0)(h)=(ρ(vij+1vij+2)+ρ(vij+1vi+1j+1)+ρ(vij+2vi+1j+2)+ρ(vi+1j+1vi+1j+2))(ρ(vijvij+1)+ρ(vijvi+1j)+ρ(vij+1vi+1j+1)+ρ(vi+1jvi+1j+1))=[1+m(i21)]+j+22+[1+m(i+121)][1+m(i21)]j2[1+m(i+121)]=j+22j2=1 For i=2km;j=1,3,5,m; m1(2)or j=1,3,5,m+1; m0(2),and j=2,4,6,m+1; m1(2)or j=2,4,6,m; m0(2)Wt(0,1,0)(g)Wt(0,1,0)(h)=(ρ(vij+1vij+2)+ρ(vij+1vi+1j+1)+ρ(vij+2vi+1j+2)+ρ(vi+1j+1vi+1j+2))(ρ(vijvij+1)+ρ(vijvi+1j)+ρ(vij+1vi+1j+1)+ρ(vi+1jvi+1j+1))=[1+m(i21)]+mkm+1k2i2km+12+mkm+1k2(i2km)+j+22+k[1+m(i21)]mkm+1k2i2km+12mkm+1k2(i2km)j2k=j+22j2=1 For i=2km+1;j=1,3,5,m; m1(2)or j=1,3,5,m+1; m0(2),and j=2,4,6,m+1; m1(2)or j=2,4,6,m; m0(2)Wt(0,1,0)(g)Wt(0,1,0)(h)=(ρ(vij+1vij+2)+ρ(vij+1vi+1j+1)+ρ(vij+2vi+1j+2)+ρ(vi+1j+1vi+1j+2))(ρ(vijvij+1)+ρ(vijvi+1j)+ρ(vij+1vi+1j+1)+ρ(vi+1jvi+1j+1))=k+mkm+1k2i2km+12+mkm+1k2(i2km)+j+22+kkmkm+1k2i2km+12mkm+1k2(i2km)j2k=j+22j2=1 For i=2km+2,,n1;j=1,3,5,m; m1(2)or j=1,3,5,m+1; m0(2),and j=2,4,6,m+1; m1(2)or j=2,4,6,m; m0(2)Wt(0,1,0)(g)Wt(0,1,0)(h)=(ρ(vij+1vij+2)+ρ(vij+1vi+1j+1)+ρ(vij+2vi+1j+2)+ρ(vi+1j+1vi+1j+2))(ρ(vijvij+1)+ρ(vijvi+1j)+ρ(vij+1vi+1j+1)+ρ(vi+1jvi+1j+1))=j+22j2=1

Now we calculate the differences between the weights of the vertically adjacent faces as follows:

Let, g=fi+1j and h=fij be two vertical consecutive faces.

Then for i=1,2,,2km2 and j=1,3,5,,m+1, m1(2)or j=1,3,5,m, m1(2) Wtρ(0,1,0)(g)Wtρ(0,1,0)(h)=(ρ(vi+1jvi+1j+1)+ρ(vi+1jvi+2j)+ρ(vi+1j+1vi+2j+1)+ρ(vi+2jvi+2j+1))(ρ(vijvij+1)+ρ(vijvi+1j)+ρ(vij+1vi+1j+1)+ρ(vi+1jvi+1j+1))=j2+j+12+1+m(i+221)j2j+12(1+m(i21))=mi+22mi2=m

For, i=2km1 and j=1,3,5,,m+1, m1(2)or j=1,3,5,m, m1(2) Wtρ(0,1,0)(g)Wtρ(0,1,0)(h)=(ρ(vi+1jvi+1j+1)+ρ(vi+1jvi+2j)+ρ(vi+1j+1vi+2j+1)+ρ(vi+2jvi+2j+1))(ρ(vijvij+1)+ρ(vijvi+1j)+ρ(vij+1vi+1j+1)+ρ(vi+1jvi+1j+1))=mkm+1k222+mkm+1k2(1)+j2+mkm+1k222+mkm+1k2(1)+j+12+k1m(i21)mkm+1k212mkm+1k2(0)j2mkm+1k212mkm+1k2(0)j+12=mkm+1k2+mkm+1k2+mkm+1k2+mkm+1k2+k1mi2+mmkm+1k2mkm+1k2=mkm+1k+k1mkm+m=m

For, i=2km and j=1,3,5,,m+1, m1(2)or j=1,3,5,m, m1(2) Wtρ(0,1,0)(g)Wtρ(0,1,0)(h)=(ρ(vi+1jvi+1j+1)+ρ(vi+1jvi+2j)+ρ(vi+1j+1vi+2j+1)+ρ(vi+2jvi+2j+1))(ρ(vijvij+1)+ρ(vijvi+1j)+ρ(vij+1vi+1j+1)+ρ(vi+1jvi+1j+1))=mkm+1k2i2km+22+mkm+1k2(1)+j2+mkm+1k222+mkm+1k2(1)+j+12+k1m(i21)mkm+1k212mkm+1k2(0)j2mkm+1k212 mkm+1k2(0)j+12=mkm+1k2+mkm+1k2+mkm+1k2+mkm+1k2+k1mi2+mmkm+1k2mkm+1k2=mkm+1k+k1mkm+m=m

For, i=2km+1 and j=1,3,5,,m+1, m1(2)or j=1,3,5,m, m1(2) Wtρ(0,1,0)(g)Wtρ(0,1,0)(h)=(ρ(vi+1jvi+1j+1)+ρ(vi+1jvi+2j)+ρ(vi+1j+1vi+2j+1)+ρ(vi+2jvi+2j+1))(ρ(vijvij+1)+ρ(vijvi+1j)+ρ(vij+1vi+1j+1)+ρ(vi+1jvi+1j+1))=mkm+1k2+mkm+1k2+j2+m2(1)+m2(0)+mkm+1k2(1)+mkm+1k2(1)+j+12+m2(1)+m2(0)mkm+1k2(1)mkm+1k2(1)j2mkm+1k2(1)mkm+1k2(1)j+12=m

For, i=2km+2,,n1 and j=1,3,5,,m+1, m1(2)or j=1,3,5,m, m1(2) Wtρ(0,1,0)(g)Wtρ(0,1,0)(h)=(ρ(vi+1jvi+1j+1)+ρ(vi+1jvi+2j)+ρ(vi+1j+1vi+2j+1)+ρ(vi+2jvi+2j+1))(ρ(vijvij+1)+ρ(vijvi+1j)+ρ(vij+1vi+1j+1)+ρ(vi+1jvi+1j+1))=2mkm+1k2+2mkm+1k2+m12km2+mi2km12+j2+j+122mkm+1k22mkm+1k2mi2km12mi2km22j2j+12=mi2km2mi2km2+m=m

Hence it follows that the weights of any two faces f and g are distinct. Complete the proof by clearly giving the two required inequalities. □

Theorem 7.

Let m2 be a positive integers and G=Pn+1Pm+1 be grid graph, then fs(1,0,1)(G)=4+mn5

Proof.

We define vertex-face labeling ρ of type (1, 0, 1) of G in the following way ρ(vij)={1+m2i+14+m2i14,if i=1,2,,22km and j=1,3,,m+1,m0(mod2)or j=1,3,,m if m1(mod2)1+m2i+14+m2i14,if i=1,2,,22km and j=2,4,,m,m0(mod2)or j=2,4,,m+1, m1(mod2)k,if i=22km+1,,n and j=1,2,,m+1ρ(fij)={j,if i=1,2,,22km1 and j=1,2,3,,m(i22km+1)(2+m2km2k)+j,if i=22km,22km+1 and j=1,2,mm(i1)4(k1)+j,if i=22km+2,,n and j=1,2,m

The weight under labeling ρ of type (1, 0, 1) can be defined as Wtρ(1,0,1)(fij)=ρ(vij)+ρ(vi+1j)+ρ(vij+1)+ρ(vi+1j+1)+ρ(fij)

The differences between the weights of every two horizontally adjacent faces will be calculated as follows:

Let, g=fij+1 and h=fij be two horizontal consecutive faces.

Then for i=1,2,,22km1 and j=1,2,3,,m Wtρ(1,0,1)(g)Wtρ(1,0,1)(h)=(ρ(vij+1)+ρ(vi+1j+1)+ρ(vij+2)+ρ(vi+1j+2)+ρ(g))(ρ(vij)+ρ(vi+1j)+ρ(vij+1)+ρ(vi+1j+1)+ρ(h))=(j+1)j=1

For i=22km,22km+1 and j=1,2,3,,m Wtρ(1,0,1)(g)Wtρ(1,0,1)(h)=(ρ(vij+1)+ρ(vi+1j+1)+ρ(vij+2)+ρ(vi+1j+2)+ρ(g))(ρ(vij)+ρ(vi+1j)+ρ(vij+1)+ρ(vi+1j+1)+ρ(h))=(j+1)j=1

For i=22km+2,,n and j=1,2,3,,m Wtρ(1,0,1)(g)Wtρ(1,0,1)(h)=(ρ(vij+1)+ρ(vi+1j+1)+ρ(vij+2)+ρ(vi+1j+2)+ρ(g))(ρ(vij)+ρ(vi+1j)+ρ(vij+1)+ρ(vi+1j+1)+ρ(h))=(j+1)j=1

Now we measure the differences between the weights for every two vertically adjacent faces:

Let, g=fi+1j and h=fij be two vertical consecutive faces.

Then for i=1,2,,22km2 and j=1,2,3,,m Wtρ(1,0,1)(g)Wtρ(1,0,1)(h)=(ρ(vi+1j)+ρ(vi+1j+1)+ρ(vi+2j)+ρ(vi+2j+1)+ρ(g))(ρ(vij)+ρ(vij+1)+ρ(vi+1j)+ρ(vi+1j+1)+ρ(h))=(2+(m2+m2)i+34+(m2+m2)i+14)(2+(m2+m2)i+14+(m2+m2)i14)=mi+34+mi+14mi+14mi14=m(i+34i14)=m

For i=22km1 and j=1,2,3,,m Wtρ(1,0,1)(g)Wtρ(1,0,1)(h)=(ρ(vi+1j)+ρ(vi+1j+1)+ρ(vi+2j)+ρ(vi+2j+1)+ρ(g))(ρ(vij)+ρ(vij+1)+ρ(vi+1j)+ρ(vi+1j+1)+ρ(h))=2k(2+mi+14+mi14)+(2+m2km2k+jj)=2k(2+m2km2+m2km12)+2+m2km2k=m2kmm2km2m2km12=m(2km(2km1))=m

For i=22km and j=1,2,3,,m Wtρ(1,0,1)(g)Wtρ(1,0,1)(h)=(ρ(vi+1j)+ρ(vi+1j+1)+ρ(vi+2j)+ρ(vi+2j+1)+ρ(g))(ρ(vij)+ρ(vij+1)+ρ(vi+1j)+ρ(vi+1j+1)+ρ(h))=2k(1+m222km+14+m222km14)(1+m222km+14+m222km14)+2(2+m2km2k)(2+m2km2k)=m2km(m2+m2)22km+14(m2+m2)22km14=m2kmm(22km+14+22km14)=m2kmm(2km1)=m

For i=22km+1 and j=1,2,3,,m Wtρ(1,0,1)(g)Wtρ(1,0,1)(h)=(ρ(vi+1j)+ρ(vi+1j+1)+ρ(vi+2j)+ρ(vi+2j+1)+ρ(g))(ρ(vij)+ρ(vij+1)+ρ(vi+1j)+ρ(vi+1j+1)+ρ(h))=m+2(2+m2km2k)+j2(2+m2km2k)j=m

For i=22km+2,,,n and j=1,2,,m Wtρ(1,0,1)(g)Wtρ(1,0,1)(h)=(ρ(vi+1j)+ρ(vi+1j+1)+ρ(vi+2j)+ρ(vi+2j+1)+ρ(g))(ρ(vij)+ρ(vij+1)+ρ(vi+1j)+ρ(vi+1j+1)+ρ(h))=mi4(k1)+j(m(i1)4(k1)+j)=m

Hence it follows that the weights of any two faces f and g are distinct. Complete the proof by clearly giving the two required inequalities. □

Theorem 8.

Let m2 be a positive integers and G=Pn+1Pm+1 be grid graph, then fs(0,1,1)(G)=4+mn5

Proof.

We define a k-labeling ρ of type (0, 1, 1) of G in the following way

ρ(vijvij+1)={1+mi12,if i=1,2,,2kmand j=1,2,,mk,if i=2km+1,,n+1and j=1,2,,mρ(vijvi+1j)={1,if i=1,2,,2km1 andj=1,2,,m+11+mkm+1k212(i2km+1)if i=2km,2km+1 and+mkm+1k212(i2km),j=1,3,,m ; m1(2)or j=1,3,,m+1 ; m0(2)1+mkm+1k212(i2km+1)if i=2km,2km+1 and+mkm+1k212(i2km),j=2,4,,m+1 ; m1(2)or j=2,4,,m ; m0(2)2+mkmk+m212(i2km1)if i=2km+2,,2km+km21 and+m212(i2km2),j=1,3,,m ; m1(2)or j=1,3,,m+1 ; m0(2)2+mkmk+m212(i2km1)if i=2km+2,,2km+km21 and+m212(i2km2),j=2,4,,m+1 ; m1(2)or j=2,4,,m ; m0(2)k,if i=2km+km2,,n andj=1,2,,m+1 The face labels are defined as ρ(fij)={j,if i=1,2,,2km+km21 and j=1,2,,mj+m(2km+km21)4k+4,if i=2km+km2 and j=1,2,,mj4k+4+m(i1),if i=2km+km2+1,,n and j=1,2,,m

The weights can be defined as Wtρ(0,1,1)(fij)=ρ(vijvij+1)+ρ(vij+1vi+1j+1)+ρ(vi+1jvi+1j+1)+ρ(vijvi+1j)+ρ(fij)

The differences between the horizontal weights for every two adjacent faces are as follows: Let, g=fij+1 and h=fij be two horizontal consecutive faces.

Then for i=1,2,n and j=1,2,,m Wtρ(0,1,1)(g)Wtρ(0,1,1)(h)=(ρ(vij+1vij+2)+ρ(vij+2vi+1j+2)+ρ(vi+1j+1vi+1j+2)+ρ(vij+1vi+1j+1)+ρ(g))(ρ(vijvij+1)+ρ(vij+1vi+1j+1)+ρ(vi+1jvi+1j+1)+ρ(vijvi+1j)+ρ(h))=(j+1)j=1

Now the differences between the weights of every two adjacent vertical faces of type (0, 1, 1) are as follows:

Let, g=fi+1j and h=fij be two vertical consecutive faces. Then, Wtρ(0,1,1)(g)Wtρ(0,1,1)(h)=(ρ(vi+1jvi+1j+1)+ρ(vi+1j+1vi+2j+1)+ρ(vi+2jvi+2j+1)+ρ(vi+1jvi+2j)+ρ(g))(ρ(vijvij+1)+ρ(vij+1vi+1j+1)+ρ(vi+1jvi+1j+1)+ρ(vijvi+1j)+ρ(h))

For i=1,2,,2km2 and j=1,2,,m Wtρ(0,1,1)(g)Wtρ(0,1,1)(h)=(ρ(vi+1jvi+1j+1)+ρ(vi+1j+1vi+2j+1)+ρ(vi+2jvi+2j+1)+ρ(vi+1jvi+2j)+ρ(g))(ρ(vijvij+1)+ρ(vij+1vi+1j+1)+ρ(vi+1jvi+1j+1)+ρ(vijvi+1j)+ρ(h))=(1+mi+12)(1+mi12)=m(i+12i12)=m(1)=m

For i=2km1 and j=1,2,,m Wtρ(0,1,1)(g)Wtρ(0,1,1)(h)=(ρ(vi+1jvi+1j+1)+ρ(vi+1j+1vi+2j+1)+ρ(vi+2jvi+2j+1)+ρ(vi+1jvi+2j)+ρ(g))(ρ(vijvij+1)+ρ(vij+1vi+1j+1)+ρ(vi+1jvi+1j+1)+ρ(vijvi+1j)+ρ(h))=k+(1+mkm+1k2)+(1+mkm+1k2)(1+m2km22)(1)(1)=k+2+(mkm+1k)33km+m=m

For i=2km and j=1,2,,m Wtρ(0,1,1)(g)Wtρ(0,1,1)(h)=(ρ(vi+1jvi+1j+1)+ρ(vi+1j+1vi+2j+1)+ρ(vi+2jvi+2j+1)+ρ(vi+1jvi+2j)+ρ(g))(ρ(vijvij+1)+ρ(vij+1vi+1j+1)+ρ(vi+1jvi+1j+1)+ρ(vijvi+1j)+ρ(h))=k+(1+mkm+1k2+mkm+1k2)+(1+mkm+1k2+mkm+1k2)+j(1+m2km12)(1+mkm+1k2)(1+mkm+1k2)=k+(1+mkm+1k)+(1+mkm+1k)(1+m(km1))2(mmkm+1k2)=k+2(1+mkm+1k)42mkm+m+k=m

For i=2km+1 and j=1,2,,m Wtρ(0,1,1)(g)Wtρ(0,1,1)(h)=(ρ(vi+1jvi+1j+1)+ρ(vi+1j+1vi+2j+1)+ρ(vi+2jvi+2j+1)+ρ(vi+1jvi+2j)+ρ(g))(ρ(vijvij+1)+ρ(vij+1vi+1j+1)+ρ(vi+1jvi+1j+1)+ρ(vijvi+1j)+ρ(h))=k+(2+mkmk+m2)+(2+mkmk+m2)k(1+mkm+1k2+mkm+1k2)(1+mkm+1k2+mkm+1k2)=k+2(2+mkmk)+mk2(1+mkm+1k)=m

For i=2km+2,,2km+km22 and j=1,2,,m Wtρ(0,1,1)(g)Wtρ(0,1,1)(h)=(ρ(vi+1jvi+1j+1)+ρ(vi+1j+1vi+2j+1)+ρ(vi+2jvi+2j+1)+ρ(vi+1jvi+2j)+ρ(g))(ρ(vijvij+1)+ρ(vij+1vi+1j+1)+ρ(vi+1jvi+1j+1)+ρ(vijvi+1j)+ρ(h))=2+mkmk+m212(i2km)+m212(i2km1)+2+mkmk+m212(i2km)+m212(i2km1){2+mkmk+m212(i2km1)+m212(i2km2)}{2+mkmk+m212(i2km1)+m212(i2km2)}=m12(i2km)+m12(i2km1)m12(i2km1)m12(i2km2)=m12(i2km)+m12(i2km1)m12(i2km1)m12(i2km)+m=m

For i=2km+km21 and j=1,2,,m Wtρ(0,1,1)(g)Wtρ(0,1,1)(h)=(ρ(vi+1jvi+1j+1)+ρ(vi+1j+1vi+2j+1)+ρ(vi+2jvi+2j+1)+ρ(vi+1jvi+2j)+(g))(ρ(vijvij+1)+ρ(vij+1vi+1j+1)+ρ(vi+1jvi+1j+1)+ρ(vijvi+1j)+ρ(h))=(3k)+(j+m(2km+km21)4k+4)k(4+2mkm2k+m12(i2km1)+m12(i2km2))=k+j+m(2km+km21)+4k42mkm+2km12(km22)m12(km23)j=mkm2mm12km2+mm12(km21)+m=mkm2m12km2m12(km21)+m=mkm2mkm2+m=m

For i=2km+km2 and j=1,2,,m Wtρ(0,1,1)(g)Wtρ(0,1,1)(h)=(ρ(vi+1jvi+1j+1)+ρ(vi+1j+1vi+2j+1)+ρ(vi+2jvi+2j+1)+ρ(vi+1jvi+2j)+(g))(ρ(vijvij+1)+ρ(vij+1vi+1j+1)+ρ(vi+1jvi+1j+1)+ρ(vijvi+1j)+ρ(h))=j4k+4+m(2km+km2)(j+m(2km+km2)4k+4)=m

For i=2km+km2+1,,n1 and j=1,2,,m Wtρ(0,1,1)(g)Wtρ(0,1,1)(h)=(ρ(vi+1jvi+1j+1)+ρ(vi+1j+1vi+2j+1)+ρ(vi+2jvi+2j+1)+ρ(vi+1jvi+2j)+(g))(ρ(vijvij+1)+ρ(vij+1vi+1j+1)+ρ(vi+1jvi+1j+1)+ρ(vijvi+1j)+ρ(h))=(j4k+4+mi)(j4k+4+m(i1))=(mim(i1))=m

Hence it follows that the weights of any two faces f and g are distinct. Complete the proof by clearly giving the two required inequalities. □

Theorem 9.

Let m2 be a positive integers and G=Pn+1Pm+1 be grid graph, then fs(1,1,1)(G)=7+mn9

Proof.

Consider, an integer m+13 such that m+13=m2m+13. Then the entire face irregular labeling is defined as follow ϕ(vij)={1+i12m+13,i=1,2,3,,2km+13,j=1,2,,m+1k,i=2km+13+1,,n+1j=1,2,,m+1

For j=1,2,,m the face labels are as follows ϕ(fij)={j,i=1,2,,2km+13+1+4k4mkm+13m2j+8+m(2km+13+4kmmkm+13m2+1)8k,i=2km+13+4kmmkm+13m2+2j+8+m(2km+13+4kmmkm+13m2+1)8k+m(i2km+134kmmkm+13m22),i=2km+13+4kmmkm+13m2+3,,n ϕ(vijvi+1j)={1,i=1,2,,2km+131,  j=1,2,,m+11+12(mkm+13+3m+13m3k+3)12(i2km+13+1)+12(mkm+13+3m+13m3k+3)12(i2km+13),i=2km+13,2km+13+1,j=1,3,,m,m1(2) or j=1,3,,m+1,m0(2)1+12(mkm+13+3m+13m3k+3)12(i2km+13+1)+12(mkm+13+3m+13m3k+3)12(i2km+13),i=2km+13,2km+13+1,j=2,4,,m+1,m1(2) or j=2,4,,m,m0(2)1+m212(i2km+131)+m212(i2km+132)+mkm+13+3m+13m3k+3,i=2km+13+2,,2km+13+1+4k4mkm+13m2,j=1,3,,m,m1(2) or j=1,3,,m+1,m0(2)1+m212(i2km+131)+m212(i2km+132)+mkm+13+3m+13m3k+3,i=2km+13+2,,2km+13+1+4k4mkm+13m2,j=2,4,,m+1,m1(2) or j=2,4,,m,m0(2)k,i=2km+13+4k4mkm+13m2+2,,n, j=1,2,,m

For   j=1,2,,m the horizontal edges labels are as follow ϕ(vijvij+1)={1+i12m+13,i=1,2,3,,2km+13k,i=2km+13+1,,n

The weight of a face is defined as Wt(1,1,1)(fij)=ϕ(vij)+ϕ(vij+1)+ϕ(vi+1j)+ϕ(vi+1j+1)+ϕ(vijvij+1)+ϕ(vijvi+1j)+ϕ(vi+1jvi+1j+1)+ϕ(vij+1vi+1j+1)+ϕ(fij)

Now we calculate the difference between the weights for every two adjacent horizontal faces in each row as follow.

Let, g=fij+1 and h=fij be two horizontal consecutive faces. Then, Wt(1,1,1)(g)Wt(1,1,1)(h)=ϕ(vij+1)+ϕ(vij+2)+ϕ(vi+1j+1)+ϕ(vi+1j+2)+ϕ(vij+1vij+2)+ϕ(vij+1vi+1j+1)+ϕ(vi+1j+1vi+1j+2)+ϕ(vij+2vi+1j+2)ϕ(vij)ϕ(vij+1)ϕ(vi+1j)ϕ(vi+1j+1)ϕ(vijvij+1)ϕ(vijvi+1j)ϕ(vi+1jvi+1j+1)ϕ(vij+1vi+1j+1)+ϕ(g)ϕ(h)=ϕ(vij+2)+ϕ(vi+1j+2)+ϕ(vij+1vij+2)+ϕ(vi+1j+1vi+1j+2)+ϕ(vij+2vi+1j+2)+ϕ(g)ϕ(vij)ϕ(vi+1j)ϕ(vijvij+1)ϕ(vi+1jvi+1j+1)ϕ(vijvi+1j)ϕ(h)

For i=1,2,3,,2km+132,  j=1,2,,m Wt(1,1,1)(g)Wt(1,1,1)(h)=1+i12m+13+1+i2m+13+1+i12m+13+1+i2m+13+1+j+11i12m+131i2m+131i12m+131i2m+131j Wt(1,1,1)(g)Wt(1,1,1)(h)=1

For i=2km+131,  j=1,2,,m Wt(1,1,1)(g)Wt(1,1,1)(h)=1+i12m+13+1+i2m+13+1+i12m+13+1+i2m+13+1+j+11i12m+131i2m+131i12m+131i2m+131j=1

For i=2km+13,  j=1,2,,m Wt(1,1,1)(g)Wt(1,1,1)(h)=1+i12m+13+k+1+i12m+13+k+1+12(mkm+13+3m+13m3k+3)×12(i2km+13+1)+12(mkm+13+3m+13m3k+3)×12(i2km+13)+j+11i12m+13k1i12m+13k112(mkm+13+3m+13m3k+3)×12(i2km+13+1) 12(mkm+13+3m+13m3k+3)×12(i2km+13)j=1

For i=2km+13+1,  j=1,2,,m Wt(1,1,1)(g)Wt(1,1,1)(h)=k+k+k+k+1+12(mkm+13+3m+13m3k+3)12(i2km+13+1)+12(mkm+13+3m+13m3k+3)×12(i2km+13)+j+1kkkk112(mkm+13+3m+13m3k+3)×12(i2km+13+1)12(mkm+13+3m+13m3k+3)×12(i2km+13)j=1

For i=2km+13+2,,2km+13+1+4k4mkm+13m2,  j=1,2,,m Wt(1,1,1)(g)Wt(1,1,1)(h)=k+k+k+k+1+m212(i2km+131)+m212(i2km+132)+mkm+13+3m+13m3k+3+j+1kkkk1m212(i2km+131)m212(i2km+132)mkm+133m+13+m+3k3j=1

For i=2km+13+4k4mkm+13m2+2,  j=1,2,,m Wt(1,1,1)(g)Wt(1,1,1)(h)=k+k+k+k+k+j+1+(8+m(2km+13+4kmmkm+13m2+1)8k)kkkkkj(8+m(2km+13+4kmmkm+13m2+1)8k)=1

For i=2km+13+4k4mkm+13m2+3,,n,  j=1,2,,m Wt(1,1,1)(g)Wt(1,1,1)(h)=k+k+k+k+k+j+1+8+m(2km+13+4kmmkm+13m2+1)8k+m(i2km+134kmmkm+13m22)kkkkkj(8+m(2km+13+4kmmkm+13m2+1)8k)=1

Now the calculate the difference between the weights for every two adjacent vertical faces as follow.

Let, g=fi+1j and h=fij be two vertical consecutive faces. Wt(1,1,1)(g)Wt(1,1,1)(h)=ϕ(vi+1j)+ϕ(vi+1j+1)+ϕ(vi+2j)+ϕ(vi+2j+1)+ϕ(vi+1jvi+1j+1)+ϕ(vi+1jvi+2j)+ϕ(vi+2jvi+2j+1)+ϕ(vi+1j+1vi+2j+1)+ϕ(g)ϕ(vij)ϕ(vij+1)ϕ(vi+1j)ϕ(vi+1j+1)ϕ(vijvij+1)ϕ(vijvi+1j)ϕ(vi+1jvi+1j+1)ϕ(vij+1vi+1j+1)ϕ(h)=ϕ(vi+2j)+ϕ(vi+2j+1)+ϕ(vi+1jvi+2j)+ϕ(vi+2jvi+2j+1)+ϕ(vi+1j+1vi+2j+1)+ϕ(g)ϕ(vij)ϕ(vij+1)ϕ(vijvij+1)ϕ(vijvi+1j)ϕ(vij+1vi+1j+1)ϕ(h)

For i=1,2,3,,2km+132,  j=1,2,,m Wt(1,1,1)(g)Wt(1,1,1)(h)=1+i+12m+13+1+i+12m+13+1+1+i+12m+13+1+j1i12m+131i12m+131i12m+1311j=3i+12m+133i12m+13=3m+13(i+12i12)

Since (i+12i12)=1, for every value of i, so we have Wt(1,1,1)(g)Wt(1,1,1)(h)=3m+13=m

For i=2km+131,  j=1,2,,m Wt(1,1,1)(g)Wt(1,1,1)(h)=3k+1+1+12(i+12km+13+1){(mkm+13+3m+13m3k+3)2+(mkm+13+3m+13m3k+3)2}+0+j1i12m+131i12m+131i12m+1311j=3k+2+(1)(mkm+13+3m+13m3k+3)53i12m+13=3k+2+mkm+13+3m+13m3k+353i12m+13=mkm+13+3m+13m3i12m+13=m

For i=2km+13,  j=1,2,,m Wt(1,1,1)(g)Wt(1,1,1)(h)=3k+2+12(i+12km+13+1){(mkm+13+3m+13m3k+3)2+(mkm+13+3m+13m3k+3)2} +12(i+12km+13){(mkm+13+3m+13m3k+3)2+(mkm+13+3m+13m3k+3)2}+j1i12m+131i12m+131i12m+13 212(i2km+13+1){(mkm+13+3m+13m3k+3)2+(mkm+13+3m+13m3k+3)2}12(i2km+13){(mkm+13+3m+13m3k+3)2 +(mkm+13+3m+13m3k+3)2}j=3k+(1)(mkm+13+3m+13m3k+3)+(1)(mkm+13+3m+13m3k+3)33i12m+13(1)(mkm+13+3m+13m3k+3) =3k+mkm+13+3m+13m3k+3+mkm+13+3m+13m3k+333i12m+13mkm+133m+13+m+3k3=mkm+13+3m+13m3i12m+13=m

For i=2km+13+1,  j=1,2,,m Wt(1,1,1)(g)Wt(1,1,1)(h)=3k+2+12(i+12km+131){m2+m2}+12(i+12km+132){m2+m2}+2mkm+13+6m+132m6k+6+j3k212(i2km+13+1) {(mkm+13+3m+13m3k+3)2+(mkm+13+3m+13m3k+3)2}12(i2km+13){(mkm+13+3m+13m3k+3)2+(mkm+13+3m+13m3k+3)2}j=3k+2+(1)m+0+2mkm+13+6m+132m6k+63k2 (1)(mkm+13+3m+13m3k+3)(1)(mkm+13+3m+13m3k+3)=3k+2+m3k2=m

For i=2km+13+4kmmkm+13m2+2,  j=1,2,,m Wt(1,1,1)(g)Wt(1,1,1)(h)=5k+j+(8+m(2km+13+4kmmkm+13m2+1)8k)5kj(8+m(2km+13+4kmmkm+13m2+1)8k) =5k+j+(8+m(2km+13+4kmmkm+13m2+1+11)8k)5kj(8+m(2km+13+4kmmkm+13m2+1+11)8k) =(8+m(i+1)8k1)(8+m(i1)8k)=(8+m(i)8k)(8+m(i1)8k)=8+mi8k8mi+m+8k=m

For i=2km+13+4kmmkm+13m2+3,,n,  j=1,2,,m Wt(1,1,1)(g)Wt(1,1,1)(h)=5k+j+8+m(2km+13+4kmmkm+13m2+1)8k+m(i+12km+134kmmkm+13m22)5kj8m(2km+13+4kmmkm+13m2+1) +8km(i2km+134kmmkm+13m22)=m(i+12km+134kmmkm+13m22)m(i2km+134kmmkm+13m22)=mi+m2mkm+13m4kmmkm+13m22mmi+2mkm+13+m4kmmkm+13m2+2m=m

Hence it follows that the weights of any two faces f and g are distinct. Complete the proof by clearly giving the two required inequalities. □

3 Observation

The grid graph G=Pn+1Pm+1 contains exactly mn + 1 faces. Consider ρ be face irregular k labeling of type (0, 0, 1) of a 2 connected plane graph G. Since the weight of the face f under a k-labeling ρ of type (α,β,γ), where α,β,γ{0,1}, is defined as Wtρ(α,β,γ)(f)=α vfρ(v)+β efρ(e)+γ ρ(f)

In the case (α,β)=(0,0), the face weight of type (0, 0, 1) is reduced to the label of the respective faces. Since ρ is face irregular k-labeling so face weights must be distinct so that weights of the faces would be label of the respective faces and hence fs(0,0,1)(G)=mn+1.

4 Conclusion

In this paper, we have applied new characteristic of face irregular evaluations of type (α,β,γ) for grid graphs for parameters, where grid graph G with n rows and m columns is the graph of cartesian product of path graphs Pn+1Pm+1. To determine the face irregularity strength of type (α,β,γ) of planar graphs is a very complicated task. We investigated the tight lower bound for the face irregular evaluations for all possible combinations for parameters α,β,γ{0,1} are explained in this research for G.

References

  • Ahmad, A., Al-Mushayt, O. B. S., Bača, M. (2014). On edge irregularity strength of graphs. Appl. Math. Comput. 243: 607–610.
  • Ahmad, A., Bača, M., Siddiqui, M. K. (2014). On edge irregular total labeling of categorical product of two cycles. Theory Comput. Syst. 54(1): 1–12.
  • Anholcer, M., Kalkowski, M., Przybyło, J. (2009). A new upper bound for the total vertex irregularity strength of graphs. Discrete Math. 309(21): 6316–6317.
  • Anholcer, M., Palmer, C. (20112). Irregular labellings of circulant graphs. Discrete Math. 312: 3461–3466.
  • Bača, M., Ovais, A., Semaničová-Feňovčíková, A., Suparta, N. On face irregular evaluations of plane graphs. Discussiones Math. Graph Theory, in press.
  • Mughal, A., Jamil, N. (2021). Total face irregularity strength of grid and wheel graph under K-labeling of type (1,1,0). Hindawi, J. Math. 2021: Article ID 1311269.
  • Amar, D., Togni, O. (1998). Irregularity strength of trees. Discrete Math. 190: 15–38.
  • Bača, M., Jendroľ, S., Miller, M., Ryan, J. (2007). On irregular total labellings. Discrete Math. 307: 1378–1388.
  • Bača, M., Siddiqui, M. K. (2014). Total edge irregularity strength of generalized prism. Appl. Math. Comput. 235: 168–173.
  • Chartrand, G., Jacobson, M. S., Lehel, J., Oellermann, O. R., Ruiz, S., Saba, F. (1988). Irregular networks. Congr. Numer. 64: 187– 192.
  • Dimitz, J. H., Garnick, D. K., Gyárfás, A. (1992). On the irregularity strength of the m × n grid. J. Graph Theory 16: 355–374.
  • Frieze, A., Gould, R. J., Karonski, M., Pfender, F. (2002). On graph irregularity strength. J. Graph Theory 41: 120–137.
  • Gyárfás, A. (1998). The irregularity strength of Km,m is 4 for odd m. Discrete Math. 71: 273–274.
  • Kalkowski, M., Karonski, M., Pfender, F. (2011). A new upper bound for the irregularity strength of graphs. SIAM J. Discrete Math. 25(3): 1319–1321.
  • Lehel, J. (1991). Facts and quests on degree irregular assignment. In: Graph Theory Combinatorics and Applications. New York: Wiley, pp. 765–782.
  • Nierhoff, T. (2000). A tight bound on the irregularity strength of graphs. SIAM J. Discrete Math. 13: 313–323.
  • Ryan, J., Munasinghe, B., Tanna, D. Reflexive irregular labelings, preprint.