353
Views
5
CrossRef citations to date
0
Altmetric
Reviews

Total evaporation estimation for accurate water accounting purposes: an appraisal of various available estimation methods

, ORCID Icon &
Pages 1333-1351 | Received 12 Nov 2015, Accepted 16 Jun 2016, Published online: 19 Jul 2016
 

Abstract

The estimation of total evaporation is fundamental for water accounting, considering its influence on water availability. Moreover, the current increase in water consumption (e.g. in sub-Saharan Africa and the world over), land cover/use changes, deteriorating water quality and the climate change projections in most regions of the world underscore the need to understand water loss. So far, different approaches have been developed and implemented in estimating the variations of total evaporation, with varying accuracies. The aim of this work was therefore, to provide a review of these different approaches for estimating total evaporation, as well as a detailed discussion of their strengths and weaknesses. Findings from this review have shown that total evaporation estimates derived, using ground-based meteorological and micro-meteorological methods are inadequate for representing its large-scale spatial variations. On the other hand, remote sensing technology, which acquires data at different resolutions (i.e. radiometric, spectral, spatial and temporal), provides timely, up-to-date and relatively accurate spatial estimates of total evaporation over large geographic coverage, for sustainable and effective water accounting, which is key for well-informed and improved management of water resources at both catchment and regional scales. In this regard, more details on the remote sensing-based methods of estimating total evaporation are provided, especially considering the robust technological advancements and its potential in characterizing earth features over time and space. This work has also managed to identify research gaps and challenges in the accurate estimation of total evaporation, using remote sensing, especially with the emergence of more advanced sensors and the characteristics of the landscape.

Acknowledgements

Authors would like to thank the Centre for Water Resources Research, University of KwaZulu-Natal, within which the research was conducted and express their gratitude to anonymous reviewers.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.