278
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

A water identification method basing on grayscale Landsat 8 OLI images

, , , &
Pages 700-710 | Received 05 Mar 2018, Accepted 09 Nov 2018, Published online: 14 Jun 2019
 

Abstract

Accurate identification of water boundaries is of great significance to water resources surveys. Most water indexes have been designed for different districts and cannot be universally utilized in different regions and, in addition, they rely on atmospheric correction. A new water index, None-Radiation-Calibration Water Index (NRCWI), was constructed by Landsat OLI Band 3 (Green), Band 5 (NIR), and Band 6 (SWIR1), and was compared to the previous method, Normalized Difference Water Index (NDWI), Modified Normalized Difference Water Index (MNDWI), Automated Water Extraction Index (AWEI). We evaluated the accuracy of four water index methods for classifying water in 30-m resolution Landsat 8 OLI imagery from the Bohai Sea Rim in China, which takes in a broad assortment of features including sea and coastline, lakes, rivers, man-made water features, and mountains (shadow water). The following outcomes were obtained: 1. The overall accuracy of NRCWI was 95.23%, which is higher than NDWI, MNDWI, AWEI; 2. The leakage error of NRCWI was 5.48%, the misclassification error was 6.15%, and it implies that the error of NRCWI was effected decrease; 3. NRCWI had the highest kappa coefficient in lakes, rivers, man-made waters, mountains, and other ground features, which means that the method can reach a high accuracy in case 2 water which is principally situated in the near shore, estuary and so on; 4. In the applicability study, the kappa values of NRCWI were 89.99% (OLI), 87.36% (ETM+), 87.33% (TM), and 81.20% (Sentinel-2 MSI). Overall, the NRCWI method performed the best, with the highest accuracy and the lowest leakage error, which may be useful in OLI, ETM+, and TM imagery.

Subject classification codes::

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This paper was jointly supported by the National Key R&D Program of China (2017YFC0406004, 2017YFC0406006); Science Foundation of Beijing Municipal Education Commission (SQKM201710028013).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.