434
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Synergistic use of particle swarm optimization, artificial neural network, and extreme gradient boosting algorithms for urban LULC mapping from WorldView-3 images

ORCID Icon, ORCID Icon, &
Pages 773-791 | Received 25 Nov 2019, Accepted 22 Feb 2020, Published online: 12 Mar 2020
 

Abstract

Geographic object-based image analysis (GEOBIA) has emerged as an effective and evolving paradigm for analyzing very high resolution (VHR) images as it demonstrates preeminence over the traditional pixel-wise methods and enables the utilization of diverse spectral, geometrical, and textural information to for image classification. Among feature selection (FS) methods, metaheuristic FS techniques have recently demonstrated effective performance in the dimensionality reduction of GEOBIA features. In this study, an artificial neural network (ANN) was integrated with particle swarm optimization (PSO) to enhance the learning process and more effectively determine the most significant features and their importance using WorldView-3 (WV-3) satellite data. First, multi-resolution image segmentation parameters were tuned using Taguchi optimization technique and unsupervised segmentation quality measure. Second, the proposed ANN–PSO was compared with PSO under 100 iterations. The ANN–PSO integration achieved lower root mean square error (RMSE) in all the iterations. Third, state-of-the-art extreme gradient boosting (Xgboost) image classifier was used to derive the land use/land cover (LULC) map of the first study area and assess the transferability of the selected features on the second and third regions. The Xgboost classifier obtained 91.68%, 89.54%, and 89.33% overall accuracies for the first, second, and third sites, respectively. ANN contributed to an intelligent approach for identifying which features are more likely to be relevant and discriminate the land cover types. The proposed integrated FS is a promising approach and an efficient tool for determining significant features and enhancing the detection of urban LULC classes from WV-3 data.

Acknowledgments

We would like to appreciate the DigitalGlobe Foundation, which made the WorldView-3 data available for this study.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.