954
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Modelling and accessing land degradation vulnerability using remote sensing techniques and the analytical hierarchy process approach

ORCID Icon, , &
Pages 7122-7142 | Received 15 Mar 2021, Accepted 19 Jul 2021, Published online: 01 Sep 2021
 

Abstract

Land degradation and desertification have recently become a critical problem in Ethiopia. Accordingly, identification of land degradation vulnerable zonation and mapping was conducted in Wabe Shebele River Basin, Ethiopia. Precipitation derived from Global Precipitation Measurement Mission (GMP), the Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized difference vegetation index (NDVI) and land surface temperature (LST), topography (slope), and pedological properties (i.e., soil depth, soil pH, soil texture, and soil drainage) were used in the current study. NDVI has been considered as the most significant parameter followed by the slope, precipitation and temperature. Geospatial techniques and the Analytical Hierarchy Process (AHP) approach were used to model the land degradation vulnerable index. Validation of the results with google earth image shows the applicability of the model in the study. The result is classified into very highly vulnerable (17.06%), highly vulnerable (15.01%), moderately vulnerable (32.72%), slightly vulnerable (16.40%), and very slightly vulnerable (18.81%) to land degradation. Due to the small rate of precipitation which is vulnerable to evaporation by high temperature in the region, the downstream section of the basis is categorized as highly vulnerable to Land Degradation (LD) and vice versa in the upstream section of the basin. Moreover, the validation using the Receiver Operating Characteristic (ROC) curve analysis shows an area under the ROC curve value of 80.92% which approves the prediction accuracy of the AHP method in assessing and modelling LD vulnerability zone in the study area. The study provides a substantial understanding of the effect of land degradation on sustainable land use management and development in the basin.

Acknowledgements

The authors are highly indebted to all secondary data provide organizations.

Discosure statement

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.