813
Views
2
CrossRef citations to date
0
Altmetric
General

A Design Approach to Evaluate the Load-Carrying Capacity of Reinforced Concrete Slabs Considering Tensile Membrane Action

(Associate Professor) ORCID Icon, (Associate Professor) ORCID Icon & (Professor) ORCID Icon
Pages 260-270 | Published online: 27 May 2020
 

Abstract

This paper proposes a novel simplified analytical approach, named the slab strip model, to assess the ultimate bearing capacity of reinforced concrete (RC) two-way slabs when large deflections are reached and tensile membrane action plays a key role. The motivation for the work derives from the fact that in recent years, investigations into the behaviour and modelling of laterally restrained and unrestrained RC slabs have been intensified owing to the reserve of bearing capacity provided by the tensile membrane action. The approach has been developed in the framework of the strip method and analyses the tensile membrane effect. Two failure criteria are accounted for: the maximum ultimate slab strip elongation and the maximum ultimate rotation of the structure at the supports. The rationality of the proposed approach is validated for laterally restrained slab strips and two-way laterally unrestrained simply supported slabs by comparing the analytical results with experimental data from the literature. The results show that despite its simplicity the method is accurate in estimating the load-carrying capacity of RC two-way slabs able to develop significant tensile membrane action. For its characteristics, the proposed method can be considered a useful initial design tool in a robustness context for conducting alternative load path analysis of RC structures characterised by two-way slabs.

Acknowledgement

This investigation is part of a national research on robustness coordinated by the National Research Council (CNR).

Disclosure of interest

The authors report no conflict of interest.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 280.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.