88
Views
0
CrossRef citations to date
0
Altmetric
Scientific Paper

Mechanical Properties of Composite Track Beam for Medium and Low Speed Maglev Transit

(PhD Student) ORCID Icon, (Master's Student) ORCID Icon & (Associate Prof.) ORCID Icon
Published online: 15 Sep 2023
 

Abstract

Traditional medium-low speed Maglev track separated beam structures have drawbacks such as large structural height and neglect of F-type rail stiffness. This study proposes a new integrated track beam for medium-low speed maglev transportation. Finite element analysis is employed to compare the strength, stiffness, and natural frequencies of the integrated track beam with the existing separated track beam. The influence of beam height on the overall mechanical performance of the integrated track beam is analyzed. The ultimate bearing capacity of the steel-concrete composite joint in the integrated track beam is investigated through full-scale model testing. The results demonstrate that the proposed integrated track beam exhibits a 28% increase in flexural stiffness. The mid-span deflection is reduced by 19.9% under static and live loads. The first-order vertical natural frequency increases by 13.6%. The main factor governing the minimum beam height of the integrated track beam is the deflection limit under static and live loads. The beam height can be optimized from 2.1 m to 1.6 m. The model testing reveals that the F-type rail is controlled by torsional stiffness and can withstand 1.3 times the design load. The ultimate bearing capacity of the steel-concrete composite joint is 4.5 times the design load, providing sufficient load reserves.

Data Availability Statement

The authors confirm that the data supporting the findings of this study are available within the article.

Disclosure Statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by Major Science and Technology project of China Railway Construction Co., Ltd. [2018-A01].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 280.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.