218
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Processing and Characterization of Polypropylene Filled with Multiwalled Carbon Nanotube and Clay Hybrid Nanocomposites

, , &
Pages 363-371 | Received 06 Feb 2014, Accepted 28 Feb 2014, Published online: 16 May 2014
 

Abstract

Nanocomposites reinforced with hybrid fillers of carbon nanotubes (CNTs) and clays were developed, aiming at enhancing the dispersion of nanofillers with balanced mechanical properties while lowering the cost of the final product. Polypropylene-based nanocomposites were prepared by the master batch dilution technique with varying combinations of CNTs and clays as fillers by using commercially available highly concentrated master batches of polypropylene/organoclays and polypropylene/multiwalled carbon nanotubes using high-shear twin-screw extrusion. Their mechanical and morphological properties were then evaluated. It was shown that the addition of hybrid filler to polypropylene enhanced the ductility and flexural properties of nanocomposites, confirming the synergistic effect of nanofillers as a multifunctional fillers. The novelty of this work lies in the synergy arising from the combination of two nanofillers with unique dimensions and aspect ratios as well as different dispersion characteristics, which have not been specifically considered previously.

Notes

Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/gpac.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 492.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.