84
Views
0
CrossRef citations to date
0
Altmetric
Articles

Polyamide 66/poly(2,6-dimethyl-1,4-phenylene oxide) compatibilization with styrene–acrylonitrile–glycidyl methacrylate: rheology, morphology, and mechanical properties

, , , &
Pages 98-108 | Received 03 Oct 2023, Accepted 08 Feb 2024, Published online: 29 Feb 2024
 

Abstract

During the blending process, styrene–acrylonitrile–glycidyl methacrylate (SAG) was grafted through in-situ formation of polyamide 66 (PA66) as a compatibilizer for poly (2,6-dimethyl-1,4-phenoxy) (PPO) composites. SAG has an obvious advantage over the PA66/PPO blends in terms of terminal performance in the dynamic rheological analysis. Moreover, the gap between the PA66 and PPO glass-transition temperatures decreases with the SAG content increasing, which indicates improved compatibility. The particle morphology of the PA66/PPO/SAG blends had narrower size distributions and became smaller after adding SAG. In addition, the compatibilization improved the mechanical properties of blends significantly when SAG reached 5 by weight per hundred resins (phr). This is attributed to enhanced interfacial adhesion and a finer dispersion morphology. However, when 7 phr of SAG are added, the exceeded compatibilizer produces a limitation on the improvement of the mechanical properties. Our results indicate that the optimal concentration of the compatibilizer, SAG, is between 3 and 5 phr for PA66/PPO (60/40).

Disclosure statement

No potential conflict of interest was reported by the author(s).

Data availability statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Additional information

Funding

This work was financially supported by grant from the Henan Province Key Research and Development Program of China [No. 222102230063], Key scientific research projects of colleges and universities in Henan Province [No. 22B430001], Anyang science and technology plan project [No. 2021C01GX003] and Henan Province College Student Innovation and Entrepreneurship Training Program Project [No. 202311330036].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 492.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.