142
Views
18
CrossRef citations to date
0
Altmetric
Research Article

Thermoalkalophilic lipase from an extremely halophilic bacterial strain Bacillus atrophaeus FSHM2: Purification, biochemical characterization and application

, , , , , & show all
Pages 151-160 | Received 07 May 2015, Accepted 06 Mar 2017, Published online: 18 Apr 2017
 

Abstract

The present study was designed to isolate and identify an extremely halophilic lipase-producing bacterial strain, purify and characterize the related enzyme and evaluate its application for ethyl and methyl valerate synthesis. Among four halophilic isolates, the lipolytic ability of one isolate (identified as Bacillus atrophaeus FSHM2) was confirmed. The enzyme (designated as BaL) was purified using three sequential steps of ethanol precipitation and dialysis, Q-Sepharose XL anion-exchange chromatography and SP Sepharose cation-exchange chromatography with a final yield of 9.9% and a purification factor of 31.8. The purified BaL (Mw∼85 kDa) was most active at 70 °C and pH 9 in the presence of 4 M NaCl and retained 58.7% of its initial activity after 150 min of incubation at 80 °C. The enzyme was inhibited by Cd2+ (35.6 ± 1.7%) but activated by Ca2+ (132.4 ± 2.2%). Evaluation of BaL's stability in the presence of organic solvents showed that xylene (25%) enhanced the relative activity of the enzyme to 334.2 ± 0.6% after 1 h of incubation. The results of esterification studies using the purified BaL revealed that maximum ethyl valerate (88.5%) and methyl valerate (67.5%) synthesis occurred in the organic solvent medium (xylene) after 48 h of incubation at 50 °C.

Disclosure statement

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of this article.

Additional information

Funding

This work was financially supported by the grant 94/1691 from Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 791.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.