173
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Biotransformation of prednisolone to hydroxy derivatives by Penicillium aurantiacum

, &
Pages 215-222 | Received 17 Dec 2016, Accepted 21 Mar 2017, Published online: 23 Apr 2017
 

Abstract

Prednisolone, a synthetic adrenal corticosteroid drug, is known to have anti-inflammatory and autoimmune activity. Biotransformation of prednisolone was carried out to obtain more bioactive prednisolone derivatives. Among six different fungi, Penicillium aurantiacum proved to be the best prednisolone hydroxylator. As a result of prednisolone biotransformation by P. aurantiacum, whole cells four different prednisolone derivatives were investigated. 20β-Hydroxyprednisolone (1) and 21,21-dimethoxy-11β-hydroxypregn-1,4-dien-3,20-dione (2) were detected as the main metabolites. These metabolites together with other two metabolites, 11β-hydroxyandrost-1,4-dien-3,17-dione (3) and 11β,17β-dihydroxyandrost-1,4-dien-3- one (4), were purified and assigned by an interpretation of their spectral data using mass spectroscopy (MS), proton nuclear magnetic resonance (1H-NMR), carbon nuclear magnetic resonance (13C-NMR) and infrared spectroscopy (IR) analyses. The best fermentation conditions for production of compounds 1–4 were as follows: medium (3) consisting of (g/l): glucose 20; l-asparagine 0.7; MgSO4.7H2O 0.5; KH2PO4 1.52; KCl 0.52; Cu (NO3)2 traces; ZnSO4.7H2O traces, supplemented with prednisolone concentration of 0.3 mg/ml, inoculated by 10% of microorganism and incubated for 72 h. Under these optimized conditions, ∼94.8% of the added prednisolone was converted to aforementioned derivatives, which have the potential to be used in industrial production of important pharmaceutical compounds.

Acknowledgements

The authors would like to thank National Research Centre, Giza, Egypt for financial support of this work.

Disclosure statement

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of this article.

Additional information

Funding

This work was supported by National Research Centre, Egypt [p100212].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 791.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.