340
Views
10
CrossRef citations to date
0
Altmetric
Research Article

Improvement of activity and stability of Rhizomucor miehei lipase by immobilization on nanoporous aluminium oxide and potassium sulfate microcrystals and their applications in the synthesis of aroma esters

ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon
Pages 210-223 | Received 26 May 2018, Accepted 27 Sep 2018, Published online: 15 Nov 2018
 

Abstract

In this study, Rhizomucor miehei lipase (RML) was immobilized on the hexagonally-ordered nanoporous aluminium oxide membranes (RML-Al2O3-NP) by adsorption and as protein-coated microcrystals (RML-PCMCs) by simultaneously precipitating RML on micron-sized potassium sulfate crystals (K2SO4) in pre-chilled acetone. The hydrolytic activities of immobilized lipase preparations were investigated in terms of p-nitrophenyl palmitate hydrolysis and their esterification activities were examined for the synthesis of some aroma esters such as butyl acetate, isoamyl acetate, hexyl acetate, heptyl acetate, and geranyl acetate. The immobilization yields were 33.8 and 25.1%, respectively for RML immobilized on Al2O3-NP membranes and potassium sulfate crystals. The catalytic efficiency ratios of RML-Al2O3-NP and RML-PCMCs were 2.3- and 3.9-fold higher than that of the free lipase, respectively in terms of hydrolytic activity. The free lipase was stabilized as 4.1- and 10.5-fold, respectively at 40 and 50 °C when immobilized on Al2O3-NP. The corresponding stabilization factors were 4.6- and 12.8-fold higher for RML-PCMCs. RML-Al2O3-NP and RML-PCMCs maintained 84 and 86% of their initial hydrolytic activities, respectively after 10 reuses. Of the synthesized aroma esters, the highest yield was obtained for the geranyl acetate. After 4 h reaction time, no geraniol was detected in the preparative-scale (196 g/L) synthesis of geranyl acetate for both the immobilized lipases when the initial geraniol amount, vinyl acetate amount, RML-PCMCs amount, and reaction temperature values were 1 mmol, 3 mmol, 100 mg (or 300 mg RML-Al2O3-NP), and 50 °C, respectively. These results show that the immobilization of R. miehei lipase by adsorption on nanoporous aluminium oxide and as protein-coated microcrystals leads to the obtention of highly stable, catalytically more active, and reusable lipase preparations.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported from Scientific Research Projects of Cukurova University with the projects number of FBA-2015-4934 and FBA-2017-9317. The authors are thankful to the Cukurova University research fund for their financial support.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 791.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.