169
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Comparative kinetic study on biodecolorization of synthetic dyes by Bjerkandera adusta SM46 in alginate beads-packed bioreactor system and shaking culture under saline-alkaline stress

ORCID Icon & ORCID Icon
Pages 296-307 | Received 27 Dec 2020, Accepted 09 May 2021, Published online: 01 Jun 2021
 

Abstract

Industrial dye wastewater contains a high saline concentration and is of an alkaline condition that may inhibit biological treatment. Finding suitable methods for the application of biological decolorisation is important. This research aimed to compare dye biodecolorization by Bjerkandera adusta SM46 using three different methods: (1) alginate-packed bioreactor (APB), (2) submerged-immobilised beads (SIB), and (3) submerged-free cell (SFC) under saline-alkaline and non-saline conditions. Five synthetic dyes with different molecular properties were used: Remazol brilliant blue R (RBBR), Azure B (AB), Brilliant red (BR), Brilliant green (BG), and Reactive green (RG). The results show that B. adusta SM46 was able to decolourise 10.8–97.3% of the dye samples in all methods and conditions, and even up to concentration 500 mg/L under the saline-alkaline condition. Evaluation of kinetic studies revealed the effectivity of the dye removal in SFC over SIB and APB. The highest degradation rate constant (k1) was achieved for RBBR and the lowest k1 was for RG. The values of k1 for SFC, SIB and APB were 0.034, 0.024, and 0.015 respectively for RBBR and 0.013, 0.003, and 0.004 respectively for RG. Treatment using submerged-free cell (SFC) resulted in the greatest and most rapid decolorisation, compared with all other treatments except BR. However, immobilisation on alginate beads increased the reusability of the fungus for sequential batches under saline-alkaline stress. Therefore, selection of a suitable method for dye decolorisation could be proposed, allowing enhancement of the removal process under high saline-alkaline stress, which is usually found in industrial dye wastewater.

Disclosure statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Funding

This research was partly supported by the Indonesian Institute of Sciences (LIPI). through DIPA of Deputy of Life Sciences FY 2020. The authors also acknowledge the facilities, and the scientific and technical assistance of the Integrated Laboratory of Bioproducts at the Indonesian Institute of Science.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 791.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.