31
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Calcium alginate-immobilized β-glucosidase from Moniliophthora perniciosa: characterization and sugarcane bagasse hydrolysis

&
Pages 542-552 | Received 05 May 2023, Accepted 30 Oct 2023, Published online: 10 Nov 2023
 

Abstract

The utilization of lignocellulosic materials for second-generation ethanol production via enzymatic catalysts is primarily hindered by enzyme cost. Enzymatic immobilization emerges as a viable solution, enabling enzyme reuse. This study investigated the immobilization of an enzymatic extract obtained from Moniliophthora perniciosa fermentation in calcium alginate spheres using the direct trapping method. Initial tests assessed β-glucosidase activity, showing that a higher concentration of calcium chloride (1 M) alongside larger diameter spheres yielded improved results. The immobilized enzyme was reused for up to 17 cycles without significant loss of activity. The percentage of reducing sugars after 48-h hydrolysis with the supplemented enzymatic extract was 226%, doubling the value achieved with only the free enzymatic extract. The immobilized enzyme retained 50% of its initial activity after 1 h at 80 °C, demonstrating higher activity at pH 6 and 60 °C. These findings suggest that this immobilization technique is simple, economically viable, and effective for the hydrolysis of pretreated sugarcane bagasse.

HIGHLIGHTS

  • Successful immobilization of M. perniciosa enzymatic extract achieved through direct entrapment in calcium alginate.

  • Immobilized β-glucosidase demonstrates sustained activity over 16 reuse cycles, showcasing the potential for cost-effective bioconversion processes.

  • Enhanced hydrolysis of sugarcane bagasse observed with immobilized enzymatic extract, indicating a promising approach for improved biomass utilization.

Acknowledgments

We thank the Biotechnology Graduate Program of State University of Feira de Santana (UEFS/FIOCRUZ), the Coordenação de Aperfeiçoamento Pessoal de Nível Superior (CAPES) for a doctoral scholarship (88882.447813/2019-01), the Bahia State Research Support Foundation (FAPESB), and the National Council for Scientific and Technological Development (CNPq).

Authors’ contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Larissa E. S. Almeida and Sandra A. Assis. The first draft of the manuscript was written by Larissa E. S. Almeida, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

We thank the Biotechnology Graduate Program of State University of Feira de Santana (UEFS/FIOCRUZ), the Coordenação de Aperfeiçoamento Pessoal de Nível Superior (CAPES) for a doctoral scholarship (88882.447813/2019-01), the Bahia State Research Support Foundation (FAPESB), and the National Council for Scientific and Technological Development (CNPq).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 791.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.