101
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Lamellipodium-driven tissue reshaping: A parametric study

&
Pages 17-23 | Received 26 May 2005, Accepted 20 Dec 2005, Published online: 25 Jan 2007
 

Abstract

We recently showed that lamellipodia are able to generate forces of the right type to drive convergent extension (CE), an important class of tissue reshaping, in early stage embryos. The purpose of the present work is to quantify the mechanics of this process using parametric analyses. We use finite elements to implement a γ–μ model in which a net interfacial tension γ acts along each cell boundary and the cytoplasm exhibits an effective viscosity μ. The stress–strain characteristics of a rectangular patch of model tissue are investigated in terms of the rate r at which lamellipodia form and the relative strength q of their contractions. In tissues that are not constrained in-plane by adjacent tissues, the rate of tissue reshaping is proportional to r the rate of lamellipodium formation and its dependence on q is nonlinear and, near its expected value of 2 highly sensitive to q. Cell elongation, a central characteristic of CE, and stress is found to vary linearly with e the degree of kinematic restraint. Relevant “mechanical pathways” are also identified.

Acknowledgement

This research was funded by the Canadian Institutes of Health Research (CIHR).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.