96
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Confocal arthroscopy-based patient-specific constitutive models of cartilaginous tissues—I: development of a microstructural model

, &
Pages 307-316 | Received 17 Jul 2006, Accepted 01 Mar 2007, Published online: 01 Aug 2007
 

Abstract

Current development of a laser scanning confocal arthroscope within our school will enable 3D microscopic imaging of joint tissues in vivo. Such an instrument could be useful, for example, in assessing the microstructural condition of the living tissues without physical biopsy. It is envisaged also that linked to a suitable microstructural constitutive formulation, such imaging could allow non-invasive patient-specific estimation of tissue mechanical performance. Such a procedure could have applications in surgical planning and simulation, and assessment of engineered tissue replacements, where tissue biopsy is unacceptable. In this first of two papers the development of a suitable constitutive framework for generating such estimates is reported. A microstructure-based constitutive formulation for cartilaginous tissues is presented. The model extends existing fibre composite-type models and accounts for strain-rate sensitivity of the tissue mechanical response through incorporation of a viscoelastic fibre phase. Importantly, the model is constructed so as to allow direct incorporation of structural data from confocal images. A finite element implementation of the formulation suitable for incorporation within commercial codes is also presented.

Acknowledgements

The financial support of ARC SPIRT grant (00107367), and Optiscan Imaging Pty. Ltd. is gratefully acknowledged.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.