314
Views
29
CrossRef citations to date
0
Altmetric
Original Articles

Evaluation of a patient-specific cost function to predict the influence of foot path on the knee adduction torque during gait

, , , &
Pages 63-71 | Received 07 May 2007, Published online: 25 Feb 2008
 

Abstract

A large external knee adduction torque during gait has been correlated with the progression of knee osteoarthritis (OA). Though foot path changes (e.g. toeing out) can reduce the adduction torque, no method currently exists to predict whether an optimal foot path exists for a specific patient. This study evaluates a patient-specific optimization cost function to predict how foot path changes influence both adduction torque peaks. Video motion and ground reaction data were collected from a patient with knee OA performing normal, toe out, and wide stance gait. Joint and inertial parameters in a dynamic, 27 degree-of-freedom, full-body gait model were calibrated to the patient's normal gait data. The model was then used in gait optimizations that predicted how the patient's adduction torque peaks would change due to changes in foot path. The cost function tracked the patient's normal gait data using weight factors calibrated to toe out gait and tested using wide stance gait. For both gait motions, the same cost function weights predicted the change in both adduction torque peaks to within 7% error. With further development, this approach may eventually permit the design of patient-specific rehabilitation procedures such as an optimal foot path for patients with knee OA.

Acknowledgements

The author gratefully acknowledges the support of the Whitaker Foundation to perform this study.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.