282
Views
40
CrossRef citations to date
0
Altmetric
Original Articles

Modelling drug elution from stents: effects of reversible binding in the vascular wall and degradable polymeric matrix

, , , &
Pages 367-377 | Received 07 Jan 2007, Accepted 30 Dec 2007, Published online: 06 Jun 2008
 

Abstract

Today the most popular approach for the prevention of the restenosis consists in the use of the drug eluting stents. The stent acts as a source of drug, from a coating or from a reservoir, which is transported into and through the artery wall. In this study, the behaviour of a model of a hydrophilic drug (heparin) released from a coronary stent into the arterial wall is investigated. The presence of the specific binding site action is modelled using a reversible chemical reaction that explains the prolonged presence of drug in the vascular tissue. An axi-symmetric model of a single stent strut is considered. First an advection–diffusion problem is solved using the finite element method. Then a simplified model with diffusion only in the arterial wall is compared with: (i) a model including the presence of reversible binding sites in the vascular wall and (ii) a model featuring a drug reservoir made of a degradable polymeric matrix. The results show that the inclusion of a reversible binding for the drug leads to delayed release curves and that the polymer erosion affects the drug release showing a quicker elution of the drug from the stent.

Acknowledgements

The authors gratefully acknowledge the financial support from the ‘Istituto Italiano di Tecnologia’ (Italian Institute of Technology - IIT), Genoa, Italy.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.