280
Views
34
CrossRef citations to date
0
Altmetric
Original Articles

Relative efficiency of abdominal muscles in spine stability

, &
Pages 291-299 | Received 22 May 2007, Accepted 28 Feb 2008, Published online: 05 Jun 2008
 

Abstract

Using an iterative kinematics-driven nonlinear finite element model, relative efficiency of individual abdominal muscles in spinal stability in upright standing posture was investigated. Effect of load height on stability and muscle activities was also computed under different coactivity levels in abdominal muscles. The internal oblique was the most efficient muscle (compared with the external oblique and rectus abdominus) in providing stability while generating smaller spinal loads with lower fatigue rate of muscles. As the weight was held higher, stability deteriorated requiring additional flexor–extensor activities. The stabilising efficacy of abdominal muscles diminished at higher activities. The difference in critical loads in frontal and sagittal planes computed in the absence of abdominal coactivity disappeared under prescribed coactivities suggesting an optimal system in stability. The central nervous system may settle for a less stable spine in favour of lowering the risk of injury. Findings could help introduce stability criterion in optimisation models.

Keywords:

Acknowledgements

The work is supported by the Natural Sciences and Engineering Research Council of Canada (NSERC-Canada). The authors dedicate this work to the memory of Professor K. P. Granata for his elegant work that inspired this study.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.