183
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

A theoretical model to study the effects of cellular stiffening on the damage evolution in deep tissue injury

, &
Pages 585-597 | Received 09 Dec 2008, Accepted 26 Jan 2009, Published online: 30 Sep 2009
 

Abstract

Pressure induced deep tissue injury (DTI) is a severe form of pressure ulcers that is hard to detect in early stages and difficult to prevent and treat. High prevalence figures are partly due to a lack of understanding of pathological pathways involved in DTI. The aim of this study was to investigate, whether changes in material properties of damaged tissue can play a role in DTI aetiology. A numerical model was developed based on muscle microstructure and tissue engineering experiments. A time dependent damage law was proposed and stiffening of dead cells incorporated. The results obtained in the microstructural investigations were used to include the stiffening information in a pre-existing macroscopic model based on animal experiments, which correlated strains to tissue damage measured in the tibialis anterior muscle in rat limbs. With the modelling approach employed in this paper, the damaged area in the rat limb models increased up to 1.65-fold and the rate of damage progression was up to 2.1 times higher in microstructural simulations when stiffening was included.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.