161
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Simulation of biological growth

&
Pages 617-626 | Received 28 Oct 2008, Accepted 07 Feb 2009, Published online: 17 Mar 2009
 

Abstract

Researchers concerned with the growth of biological tissue often use models that predict the growth as a function of a mechanical stimulus such as stress, strain or elastic energy. However, a general theory for bulk growth should consider that the mechanical stimulus may only be one of many factors contributing to growth. Another important factor could be time, as living tissues can be assumed to have a pre-programmed directional biological growth that is independent of mechanical stimuli. This paper has two objectives: the first is to introduce the concept of directional biological growth within a well developed growth theory, the second is to present the computational methods by which three-dimensional growth that encompasses time and stress effects can be simulated using commercially available finite element analysis software.

Notes

1. An explicit analytical function can be replaced by an interpolation function for a more general application.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.