135
Views
1
CrossRef citations to date
0
Altmetric
Articles

Inverse engineering of medical devices made of bioresorbable polymers

&
Pages 291-303 | Received 11 May 2009, Accepted 17 Jul 2009, Published online: 21 Sep 2009
 

Abstract

The degradation of medical devices made of bioresorbable polymers such as fixation devices in orthopaedic surgeries and scaffolds for tissue engineering can take from months to years. The trial and error approach of device development is therefore problematic and mathematical modelling of the biodegradation can help to accelerate the device development. This paper presents an inverse scheme to obtain the material parameters in a biodegradation model developed by Pan and his co-workers from existing experimental data of bioresorbable devices. The parameters can then be used to predict the degradation rate of new devices made of the same polymer. Firstly, the previously developed model is briefly outlined. Secondly, a finite element scheme and a time integration algorithm are developed for the direct analysis using the biodegradation model. Thirdly, an inverse analysis scheme is presented in combination with the direct analysis. Finally, several case studies of existing degradation data are presented to demonstrate the effectiveness of the inverse engineering approach.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.